Proctolin is a neuropeptide present in and . It was first found in Periplaneta americana, a species of cockroach in 1975. Proctolin was extracted from 125,000 cockroaches and the Edman degradation was carried out on the sample to determine the amino acid sequence, which is Arg-Tyr-Leu-Pro-Thr.
Proctolin was the first insect neuropeptide to be sequenced. Starratt and Brown identified it as a visceral muscle neurotransmitter. However, it now appears that there are many more functions of proctolin, and it is present in many more species.
Proctolin may also be present in , , decapod , and possibly even some .
A large range of proctolin peptide and nonpeptide mimetics have been synthesised to try and produce new effective insecticides.
Proctolin is a potent stimulator in the contraction of a number of visceral and skeletal muscles in insects. Proctolin stimulates contractions of the hindgut in P. americana, the foregut in S. gregaria and the midgut of Diploptera punctata and L. migratoria. Proctolin also modulates reproductive tissue, stimulating contractions of the oviducts in P. americana, Leucophaea maderae, L. migratoria, and spermathecae in L. migratoria and Rhodnius prolixus. Another function of proctolin is that it speeds up heart rate in some insects.
A proctolin receptor in Drosophila melanogaster has been recently identified as the orphan G-protein coupled receptor CG6986. The DNA of the gene sequence was cloned and expressed in cells and the expressed receptor was specific for proctolin. In Drosophila, this receptor is strongly expressed in the head, the larval hindgut, the aorta and on endings in adult hearts.
Proctolin needs to be broken down to stop it staying permanently bound to the receptor. This is done by peptidases. The first step of breakdown is cleavage of the Arg-Tyr bond, followed by the cleavage of the Tyr-Leu bond. Using a number of tissue homogenates from Periplaneta americana a soluble aminopeptidase as a key enzyme that degrades proctolin was identified. Another enzyme was also identified that cleaves the Tyr-Leu bond.
|
|