Chitons () are marine of varying size in the class Polyplacophora ( ), formerly known as Amphineura. About 940 Extant taxon and 430 fossil species are recognized.
They are also sometimes known as sea cradles or coat-of-mail shells or suck-rocks, or more formally as loricates, polyplacophorans, and occasionally as polyplacophores.
Chitons have a shell composed of eight separate shell plates or valves. These plates overlap slightly at the front and back edges, and yet articulate well with one another. Because of this, the shell provides protection at the same time as permitting the chiton to flex upward when needed for locomotion over uneven surfaces, and even allows the animal to curl up into a ball when dislodged from rocks. The shell plates are encircled by a skirt known as a girdle.
Some species live quite high in the intertidal zone and are exposed to the air and light for long periods. Most species inhabit intertidal or subtidal zones, and do not extend beyond the photic zone, but a few species live in deep water, as deep as .
Chitons are exclusively and fully marine, in contrast to the Bivalvia, which were able to adapt to brackish water and fresh water, and the Gastropoda which were able to make successful transitions to freshwater and terrestrial environments.
The most anterior plate is crescent-shaped, and is known as the cephalic plate (sometimes called a head plate, despite the absence of a complete head). The most posterior plate is known as the anal plate (sometimes called the tail plate, although chitons do not have tails.)
The inner layer of each of the six intermediate plates is produced anteriorly as an articulating flange, called the articulamentum. This inner layer may also be produced laterally in the form of notched insertion plates. These function as an attachment of the valve plates to the soft body. A similar series of insertion plates may be attached to the convex anterior border of the cephalic plate or the convex posterior border of the anal plate.
The sculpture of the valves is one of the taxonomic characteristics, along with the granulation or spinulation of the girdle.
After a chiton dies, the individual valves which make up the eight-part shell come apart because the girdle is no longer holding them together, and then the plates sometimes wash up in beach drift. The individual shell plates from a chiton are sometimes known as butterfly shells due to their shape.
The protein component of the scales and sclerites is minuscule in comparison with other biomineralized structures, whereas the total proportion of matrix is 'higher' than in mollusc shells. This implies that polysaccharides make up the bulk of the matrix. The girdle spines often bear length-parallel striations.
The wide form of girdle ornament suggests it serves a secondary role; chitons can survive perfectly well without them. Camouflage or defence are two likely functions. Certainly species such as some members of the genus Acanthochitona bear conspicuous paired tufts of spicules on the girdle. The spicules are sharp, and if carelessly handled, easily penetrate the human skin, where they detach and remain as a painful irritant.
Spicules are secreted by cells that do not express engrailed, but these cells are surrounded by engrailed-expressing cells. These neighbouring cells secrete an organic pellicle on the outside of the developing spicule, whose aragonite is deposited by the central cell; subsequent division of this central cell allows larger spines to be secreted in certain taxa.
The organic pellicule is found in most polyplacophora (but not basal chitons, such as Hanleya) but is unusual in aplacophora. Developmentally, sclerite-secreting cells arise from pretrochal and postrochal cells: the 1a, 1d, 2a, 2c, 3c and 3d cells. The shell plates arise primarily from the 2d micromere, although 2a, 2b, 2c and sometimes 3c cells also participate in its secretion.
The three-chambered heart is located towards the animal's hind end. Each of the two auricles collects blood from the gills on one side, while the muscular ventricle pumps blood through the aorta and round the body.
The excretory system consists of two nephridium, which connect to the pericardium around the heart, and remove excreta through a pore that opens near the rear of the mantle cavity. The single gonad is located in front of the heart, and releases gametes through a pair of pores just in front of those used for excretion.
The mouth is located on the underside of the animal, and contains a tongue-like structure called a radula, which has numerous rows of 17 teeth each. The teeth are coated with magnetite, a hard ferric/ferrous oxide mineral. The radula is used to scrape microscopic off the substratum. The mouth cavity itself is lined with chitin and is associated with a pair of . Two sacs open from the back of the mouth, one containing the radula, and the other containing a protrusible sensory subradular organ that is pressed against the substratum to taste for food.
Cilia pull the food through the mouth in a stream of mucus and through the oesophagus, where it is partially digested by enzymes from a pair of large pharynx glands. The oesophagus, in turn, opens into a stomach, where enzymes from a digestive gland complete the breakdown of the food. Nutrients are absorbed through the linings of the stomach and the first part of the intestine. The intestine is divided in two by a sphincter, with the latter part being highly coiled and functioning to compact the waste matter into faeces. The anus opens just behind the foot.
Chitons lack a clearly demarcated head; their nervous system resembles a dispersed ladder. No true ganglion are present, as in other molluscs, although a ring of dense neural tissue occurs around the oesophagus. From this ring, nerves branch forwards to innervate the mouth and subradula, while two pairs of main nerve cords run back through the body. One pair, the pedal cords, innervate the foot, while the palliovisceral cords innervate the mantle and remaining internal organs.
Some species bear an array of tentacles in front of the head.
A relatively good fossil record of chiton shells exists, but ocelli are only present in those dating to or younger; this would make the ocelli, whose precise function is unclear, likely the most recent eyes to evolve.
Although chitons lack osphradium, , and other sensory organs common to other molluscs, they do have numerous tactile nerve endings, especially on the girdle and within the mantle cavity.
The order Lepidopleurida also have a pigmented sensory organ called the Schwabe organ. Its function remains largely unknown, and has been suggested to be related to that of a larval eye.
However, chitons lack a cerebral ganglion.(Thorne. J. M, 1968; Moroz. L, et al., 1993).
The radular teeth of chitons are made of magnetite, and the iron crystals within these may be involved in magnetoreception, the ability to sense the polarity and the inclination of the Earth's magnetic field. Experimental work has suggested that chitons can detect and respond to magnetism.
Chitons are generally herbivorous grazers, though some are omnivorous and some carnivorous.Barnawell, E. B. (1960). The carnivorous habit among the Polyplacophora They eat , , , , and sometimes bacteria by scraping the rocky substrate with their well-developed .
A few species of chitons are predatory, such as the small western Pacific species Placiphorella velata. These predatory chitons have enlarged anterior girdles. They catch other small , such as shrimp and possibly even small fish, by holding the enlarged, hood-like front end of the girdle up off the surface, and then clamping down on unsuspecting, shelter-seeking prey.
The egg has a tough spiny coat, and usually hatches to release a free-swimming trochophore larva, typical of many other mollusc groups. In a few cases, the trochophore remains within the egg (and is then called lecithotrophic – deriving nutrition from yolk), which hatches to produce a miniature adult. Unlike most other molluscs, there is no intermediate stage, or veliger, between the trochophore and the adult. Instead, a segmented shell gland forms on one side of the larva, and a foot forms on the opposite side. When the larva is ready to become an adult, the body elongates, and the shell gland secretes the plates of the shell. Unlike the fully grown adult, the larva has a pair of simple eyes, although these may remain for some time in the immature adult.
Based on this and co-occurring fossils, one plausible hypothesis for the origin of polyplacophora has that they formed when an aberrant monoplacophoran was born with multiple centres of calcification, rather than the usual one. Selection quickly acted on the resultant conical shells to form them to overlap into protective armour; their original cones are homologous to the tips of the plates of modern chitons.
The chitons evolved from multiplacophora during the Palaeozoic, with their relatively conserved modern-day body plan being fixed by the Mesozoic.
The earliest fossil evidence of aesthetes in chitons comes from around 400 Ma, during the Early Devonian.
The Greek-derived name Polyplacophora comes from the words poly- (many), plako- (tablet), and -phoros (bearing), a reference to the chiton's eight shell plates.
Since chitons were first described by Linnaeus (1758), extensive taxonomic studies at the species level have been made. However, the taxonomic classification at higher levels in the group has remained somewhat unsettled.
The most recent classification, by Sirenko (2006), is based not only on shell morphology, as usual, but also other important features, including aesthetes, girdle, radula, gills, glands, egg hull projections, and spermatozoids. It includes all the living and extinct genera of chitons.
Further resolution within the Chitonida has been recovered through molecular analysis.
This system is now generally accepted.
Habitat
Morphology
Shell
Girdle ornament
Internal anatomy
Senses
Homing ability
Culinary uses
Life habits
Reproduction and life cycle
Predators
Evolutionary origins
History of scientific investigation
Etymology
Taxonomy
Phylogeny
External links
|
|