Pogo oscillation is a self-excited vibration in liquid-propellant rocket engines caused by combustion instability. The unstable combustion results in variations of engine thrust, causing variations of acceleration on the vehicle's flexible structure, which in turn cause variations in propellant pressure and flow rate, closing the self-excitation cycle. The name is a metaphor comparing the longitudinal vibration to the bouncing of a pogo stick. Pogo oscillation places stress on the frame of the vehicle, which in severe cases can be dangerous.
In general, pogo oscillation occurs when a surge in combustion chamber pressure increases back pressure against the fuel coming into the engine. This reduces fuel flow and thus chamber pressure. The reduced chamber pressure in turn reduces back pressure at the pump, causing more fuel to come in and repeating the cycle. In this way, a rocket engine experiencing pogo oscillations is conceptually operating somewhat like a pulsejet or pulse detonation engine. If the pulse cycle happens to match a Resonance of the rocket then dangerous can occur through positive feedback, which can, in extreme cases, tear the vehicle apart. Other situations that can induce fuel pressure fluctuations include flexing of fuel pipes.
Pogo oscillation plagued the Titan II first stage during its development, which delayed man-rating the rocket for the Gemini program. The Saturn V first stage (S-IC) experienced severe pogo oscillation on the flight of Apollo 6, which damaged the S-II and S-IVB stages above and likely would have triggered an abort if the flight had carried a crew. The second stage (S-II) had less intense pogo on other flights. The oscillations during Apollo 13's ascent caused the center engine to shut down about two minutes earlier than planned. The loss in thrust was compensated by longer burns from the second and third stages.
Modern vibration analysis methods can account for the pogo oscillation to ensure that it is far away from the vehicle's resonant frequencies. Suppression methods include damping mechanisms or bellows in propellant lines. The Space Shuttle main engines each had a damper in the Liquid oxygen line, but not in the hydrogen fuel line.
See also
External links
|
|