In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to a variability in the measurement, an indication of novel data, or it may be the result of experimental error; the latter are sometimes excluded from the data set.Pimentel, M. A., Clifton, D. A., Clifton, L., & Tarassenko, L. (2014). A review of novelty detection. Signal Processing, 99, 215-249. stating "An outlying observation may be merely an extreme manifestation of the random variability inherent in the data. ... On the other hand, an outlying observation may be the result of gross deviation from prescribed experimental procedure or an error in calculating or recording the numerical value." An outlier can be an indication of exciting possibility, but can also cause serious problems in statistical analyses.
Outliers can occur by chance in any distribution, but they can indicate novel behaviour or structures in the data-set, measurement error, or that the population has a heavy-tailed distribution. In the case of measurement error, one wishes to discard them or use statistics that are robust to outliers, while in the case of heavy-tailed distributions, they indicate that the distribution has high skewness and that one should be very cautious in using tools or intuitions that assume a normal distribution. A frequent cause of outliers is a mixture of two distributions, which may be two distinct sub-populations, or may indicate 'correct trial' versus 'measurement error'; this is modeled by a mixture model.
In most larger samplings of data, some data points will be further away from the Arithmetic mean than what is deemed reasonable. This can be due to incidental systematic error or flaws in the theory that generated an assumed family of probability distributions, or it may be that some observations are far from the center of the data. Outlier points can therefore indicate faulty data, erroneous procedures, or areas where a certain theory might not be valid. However, in large samples, a small number of outliers is to be expected (and not due to any anomalous condition).
Outliers, being the most extreme observations, may include the sample maximum or sample minimum, or both, depending on whether they are extremely high or low. However, the sample maximum and minimum are not always outliers because they may not be unusually far from other observations.
Naive interpretation of statistics derived from data sets that include outliers may be misleading. For example, if one is calculating the average temperature of 10 objects in a room, and nine of them are between 20 and 25 degrees Celsius, but an oven is at 175 °C, the median of the data will be between 20 and 25 °C but the mean temperature will be between 35.5 and 40 °C. In this case, the median better reflects the temperature of a randomly sampled object (but not the temperature in the room) than the mean; naively interpreting the mean as "a typical sample", equivalent to the median, is incorrect. As illustrated in this case, outliers may indicate data points that belong to a different population than the rest of the sample set.
capable of coping with outliers are said to be robust: the median is a robust statistic of central tendency, while the mean is not.Ripley, Brian D. 2004. Robust statistics
In general, if the nature of the population distribution is known a priori, it is possible to test if the number of outliers deviate significantly from what can be expected: for a given cutoff (so samples fall beyond the cutoff with probability p) of a given distribution, the number of outliers will follow a binomial distribution with parameter p, which can generally be well-approximated by the Poisson distribution with λ = pn. Thus if one takes a normal distribution with cutoff 3 standard deviations from the mean, p is approximately 0.3%, and thus for 1000 trials one can approximate the number of samples whose deviation exceeds 3 sigmas by a Poisson distribution with λ = 3.
Model-based methods which are commonly used for identification assume that the data are from a normal distribution, and identify observations which are deemed "unlikely" based on mean and standard deviation:
It is proposed to determine in a series of observations the limit of error, beyond which all observations involving so great an error may be rejected, provided there are as many as such observations. The principle upon which it is proposed to solve this problem is, that the proposed observations should be rejected when the probability of the system of errors obtained by retaining them is less than that of the system of errors obtained by their rejection multiplied by the probability of making so many, and no more, abnormal observations. (Quoted in the editorial note on page 516 to Peirce (1982 edition) from A Manual of Astronomy 2:558 by Chauvenet.) Benjamin Peirce, "Criterion for the Rejection of Doubtful Observations", Astronomical Journal II 45 (1852) and Errata to the original paper.. NOAA PDF Eprint (goes to Report p. 200, PDF's p. 215). – Appendix 21, according to the editorial note on page 515
The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.
Some work has also examined outliers for nominal (or categorical) data. In the context of a set of examples (or instances) in a data set, instance hardness measures the probability that an instance will be misclassified ( where is the assigned class label and represent the input attribute value for an instance in the training set ).Smith, M.R.; Martinez, T.; Giraud-Carrier, C. (2014). " An Instance Level Analysis of Data Complexity". Machine Learning, 95(2): 225-256. Ideally, instance hardness would be calculated by summing over the set of all possible hypotheses :
Practically, this formulation is unfeasible as is potentially infinite and calculating is unknown for many algorithms. Thus, instance hardness can be approximated using a diverse subset :
where is the hypothesis induced by learning algorithm trained on training set with hyperparameters . Instance hardness provides a continuous value for determining if an instance is an outlier instance.
Removing a data point solely because it is an outlier, on the other hand, is a controversial practice, often frowned upon by many scientists and science instructors, as it typically invalidates statistical results. While mathematical criteria provide an objective and quantitative method for data rejection, they do not make the practice more scientifically or methodologically sound, especially in small sets or where a normal distribution cannot be assumed. Rejection of outliers is more acceptable in areas of practice where the underlying model of the process being measured and the usual distribution of measurement error are confidently known.
The two common approaches to exclude outliers are truncation (or trimming) and Winsorising. Trimming discards the outliers whereas Winsorising replaces the outliers with the nearest "nonsuspect" data. Exclusion can also be a consequence of the measurement process, such as when an experiment is not entirely capable of measuring such extreme values, resulting in censored data.
In regression problems, an alternative approach may be to only exclude points which exhibit a large degree of influence on the estimated coefficients, using a measure such as Cook's distance.Cook, R. Dennis (Feb 1977). "Detection of Influential Observations in Linear Regression". Technometrics (American Statistical Association) 19 (1): 15–18.
If a data point (or points) is excluded from the data analysis, this should be clearly stated on any subsequent report.
|
|