Product Code Database
Example Keywords: the elder -bioshock $48-112
   » » Wiki: Oleum
Tag Wiki 'Oleum'.
Tag

Oleum ( oleum, meaning oil), or fuming sulfuric acid, is a term referring to solutions of various compositions of in , or sometimes more specifically to (also known as pyrosulfuric acid).

Oleums can be described by the formula ySO3·H2O where y is the total molar mass of sulfur trioxide content. The value of y can be varied, to include different oleums. They can also be described by the formula H2SO4· xSO3 where x is now defined as the molar free sulfur trioxide content. Oleum is generally assessed according to the free SO3 content by mass. It can also be expressed as a percentage of sulfuric acid strength; for oleum concentrations, that would be over 100%. For example, 10% oleum can also be expressed as H2SO4· 0.13611SO3, 1.13611SO3·H2O or 102.25% sulfuric acid. The conversion between % acid and % oleum is:

\%\,\text{acid} = 100 + \frac{18}{80} \times \%\,\text{oleum}
For x = 1 and y = 2 the empirical formula H2S2O7 for is obtained. Pure disulfuric acid is a solid at room temperature, melting at 36 °C and rarely used either in the laboratory or industrial processes — although some research indicates that pure disulfuric acid has never been isolated yet.


Production
Oleum is produced in the , where is oxidized to which is subsequently dissolved in concentrated sulfuric acid. Sulfuric acid itself is regenerated by dilution of part of the oleum.

The lead chamber process for sulfuric acid production was abandoned, partly because it could not produce sulfur trioxide or concentrated sulfuric acid directly due to corrosion of the lead, and absorption of NO2 gas. Until this process was made obsolete by the contact process, oleum had to be obtained through indirect methods. Historically, the biggest production of oleum came from the of at Nordhausen, from which the historical name Nordhausen sulfuric acid is derived.


Applications

Sulfuric acid production
Oleum is an important intermediate in the manufacture of sulfuric acid due to its high of hydration. When SO3 is added to water, rather than dissolving, it tends to form a fine mist of sulfuric acid, which is difficult to manage. However, SO3 added to concentrated sulfuric acid readily dissolves, forming oleum which can then be diluted with water to produce additional concentrated sulfuric acid.

Typically, above concentrations of 98.3%, sulfuric acid will undergo a spontaneous decomposition into sulfur trioxide and water

This means that sulfuric acid above said concentration will readily degenerate until it reaches 98.3%; this is impractical in some applications such as synthesis where anhydrous conditions are preferred (like alcohol eliminations). Adding sulfur trioxide alters the chemical equilibrium, allowing concentration to be increased beyond 98.3%.


As an intermediate for transportation
Oleum is a useful form for transporting sulfuric acid compounds, typically in rail tank cars, between oil refineries, which produce various sulfur compounds as a byproduct of refining, and industrial consumers.

Certain compositions of oleum are solid at room temperature, and thus are safer to ship than as a liquid. Solid oleum can be converted into liquid at the destination by steam heating or dilution or concentration. This requires care to prevent overheating and evaporation of sulfur trioxide. To extract it from a tank car requires careful heating using steam conduits inside the tank car. Great care must be taken to avoid overheating, as this can increase the pressure in the tank car beyond the tank's limit.

In addition, oleum lacks free water to attack surfaces, making it less corrosive to metals. Because of that, sulfuric acid is sometimes concentrated to oleum for in-plant pipelines and then diluted back to acid for use in industrial reactions.

Https://bluefieldsafety.com/2023/10/aint-misbehavin-frozen-pipes-when-its-warm/< /ref>

In Richmond, California in 1993 a tank car of oleum overheated and released sulfur trioxide, creating a mist of micrometre-sized sulfuric acid particles that spread over a wide area.


Organic chemistry research
Oleum is a harsh reagent, and is highly corrosive. One important use of oleum as a reagent is the secondary nitration of . The first can occur with nitric acid in sulfuric acid, but this deactivates the ring towards further electrophilic substitution. A stronger reagent, oleum, is needed to introduce the second nitro group onto the aromatic ring.


Explosives manufacture
Oleum is used in the manufacture of many with the notable exception of . (In modern manufacturing of nitrocellulose, the H2SO4 concentration is often adjusted using oleum.) The chemical requirements for explosives manufacture often require anhydrous mixtures containing and . Ordinary commercial grade nitric acid consists of the constant boiling of nitric acid and water, and contains 68% nitric acid. Mixtures of ordinary nitric acid in sulfuric acid therefore contain substantial amounts of water and are unsuitable for processes such as those that occur in the manufacture of .

The synthesis of and certain other explosives does not require oleum.

Anhydrous nitric acid, referred to as white fuming nitric acid, can be used to prepare water-free mixtures, and this method is used in laboratory scale operations where the cost of material is not of primary importance. Fuming nitric acid is hazardous to handle and transport, because it is extremely corrosive and volatile. For industrial use, such strong mixtures are prepared by mixing oleum with ordinary commercial nitric acid so that the free sulfur trioxide in the oleum consumes the water in the nitric acid.Urbanski, Vol 1, pp 347–349


Reactions
Like concentrated sulfuric acid, oleum is such a strong dehydrating agent that if poured onto powdered , or virtually any other , it will draw the hydrogen elements of water out of the sugar in an exothermic reaction, leaving a residue of nearly pure carbon as a solid. This carbon expands outward, hardening as a solid black substance with gas bubbles in it.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs