Product Code Database
Example Keywords: intel -office $29
   » » Wiki: Nappe
Tag Wiki 'Nappe'.
Tag

In , a nappe or thrust sheet is a large sheetlike body of rock that has been moved more than Howell, J.V. (Editor) 1960: Glossary of geology and related sciences. American Geological Institute, Washington D.C., 325 p. or Marko, F., Jacko, S., 1999: Structural geology (General and systematic). Vydavateľstvo Harlequin, Košice, p. 81 - 93 Dennis, J. G., 1967, International tectonic dictionary. AAPG, Tulsa, p. 112 above a from its original position. Nappes form in like continental collision zones or on the overriding plate in active zones. Nappes form when a mass of rock is forced (or ) over another rock mass, typically on a low angle fault plane. The resulting structure may include large-scale recumbent folds, shearing along the fault plane,Twiss, Robert J. and Eldridge M. Moores, Structural Geology, W. H. Freeman, 1992, p. 236 imbricate thrust stacks, fensters and .

The term stems from the French word for in allusion to a rumpled tablecloth being pushed across a table.


History
Nappes or nappe belts are a major feature of the Alps, , and .Schmid, S. M., Fügenschuh, B., Kissling, E, and Schuster, R. 2004: Tectonic Map and Overall Architecture of the Alpine Orogen. Eclogae geologicae Helvetiae v. 97, Basel: Birkhäuser Verlag, pp. 93–117, ISSN 0012-9402Gamkrelidze, I.P. 1991: Tectonic nappes and horizontal layering of the Earth’s crust in the Mediterranean belt (Carpathians, Balkanides and Caucasus). Tectonophysics, 196, p. 385-396 Since the 19th century many geologists have uncovered areas with large-scale overthrusts. Some of these were substantiated with evidence. The concept was developed by Marcel Alexandre Bertrand, who unraveled the complex history of the Alps and identified the feature as nappe de charriage. He reinterpreted earlier studies by Arnold Escher von der Linth and in the .Franks, S., Trümpy, R., 2005: The Sixth International Geological Congress: Zürich, 1894. Episodes, vol. 28, 3, p. 187-192 His work in influenced Escher and . Several years later, nappe structure was investigated in northwestern by . Lugeon later transferred the ideas of nappes to the .


Structure
Nappe can be qualified in a number of ways to indicate various features of a formation. The frontal part in the direction of movement, is called the leading edge of a nappe; numerous folds and secondary and duplexes are common features here and are sometimes called digitations. The surface of a which caused movement of a nappe is called a , detachment plane or sole of thrust. The root area is an area where the nappe is completely separated from its substratum. It is often compressed and reduced, even underthrust below the surrounding tectonic units, resulting in a specific structure called a suture. A nappe whose root area is unknown, is called a rootless nappe.

Areas with a nappe structure often contain two types of geological features:

  • A nappe outlier or is a small area isolated from the main body of the nappe by that lies on the autochthonous base; the summit of Veľký Rozsutec in the Western Carpathians is a typical example, or in Glacier National Park, .Nevin, C. M., 1950: Principles of structural geology. 4th ed. John Willey & Sons, London
  • A fault inlier, fenster, or window is an area of the autochthonous basement uncovered by erosion, but entirely surrounded by the body of the nappe; the Hohe Tauern window in the Alps is a typical example.


Classification
According to petrographical composition, two basic types of nappes are known:

  • are composed generally of crystalline basement rocks (but may contain basement sedimentary cover), forming so-called thick-skinned style. Nappes of this type usually reach a large thickness and form independent superunits such as .
  • or so called superficial nappes are composed generally of that form the upper part of , forming so-called thin-skinned style. Therefore, nappes of this type form smaller units, such as the in the Austroalpine nappes of the Alps.


Mechanisms of emplacement
Nappes are generally considered as structures, however some exceptions could be found especially among the gravitational slides along low angle faults.Graham, R.H. (1979) "Gravity sliding in the Maritime Alps" pp. 335–352 In McClay, K. R. and Price, N.J. (editors) (1981) Thrust and Nappe Tectonics (Geological Society of London Special Publication 9) Blackwell Scientific, Oxford, England,
(2025). 9780748758029, Taylor and Francis.
Gravitational forces could even be important in certain cases during emplacement of compressional thrusts. The movement of huge masses of rock may be influenced by several forces, forces that may act together or sequentially. These forces frequently result in high temperature and pressure metamorphism and strong deformation of nappe rocks.Rodrigues, S. W. O., Martins-Ferreira, M. A. C., Faleiros, F. M., Neto, M. D. C. C., & Yogi, M. T. A. G. (2019). Deformation conditions and quartz c-axis fabric development along nappe boundaries: The Andrelândia Nappe System, Southern Brasília Orogen (Brazil). Tectonophysics.

At shallower depths, low and can't cause the and behavior of solid rock necessary to move along low angle faults. It is considered that such characteristics may be achieved at significantly less extreme conditions in the rocks or , which can then act as tectonic . The process, which significantly reduces the resistance, is the fluid overpressure, which acts against the normal pressure, thereby reducing high lithostatic pressures and allowing , and formation of or that could act as a plane. Evaporites are also often related the decollement and thrust planes. Evaporites are strongly prone to shear deformation and therefore preferred planes of detachment.Davis, D.M., Engelder, T., 1985: The role of salt in fold-and-thrust belts. Tectonophysics, 119, p. 67-88

Behavior of sheets is currently explained on the model of the , which is dependent on the internal wedge taper θ.Nemčok, M., Schamel, S., Gayer, R. A., 2005: Thrustbelts: structural architecture, thermal regimes and petroleum systems. Cambridge University Press, Cambridge, 554 p. Gravitational sliding is movement generated by the movement down an inclined plane under the action of . Gravitational spreading, possibly accompanied by an initial phase of , is generated by large heat flow that causes detachment in a hinterland.Price, N.J., McClay, K.R., 1981: Introduction. p. 1-5 in Price, N.J., McClay, K.R. (Eds.), Thrust and Nappe Tectonics. Geological Society, Special Publications vol. 9, London, 528 p. Other mechanisms, such as push from behind, action of tangential compressive forces, and shortening of the basement, are essentially variations of the previous mechanisms.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time