Minotaurasaurus (meaning "Minos'-bull reptile") is a monospecific genus of ankylosaurid dinosaur that lived in Mongolia during the Late Cretaceous (late Campanian stage, ~75-71 Ma) in what is now the Djadochta Formation. The type and only species, Minotaurasaurus ramachandrani, is known from two skulls, a cervical vertebra and a cervical half ring. It was named and described in 2009 by Clifford Miles and Clark Miles. The holotype of Minotaurasaurus has been suspected to be illegally exported out of Mongolia. It has been suggested to be a synonym of Tarchia but more recent publications consider it as a distinct genus.
Minotaurasaurus was a medium-sized ankylosaurid, with an estimated length of 4.2 metres (13.8 feet), although it may have reached larger sizes as the type specimen represents an immature individual. Although not a lot of postcranial material is known, it would have had a tail club that may have been used for protection against predators or interspecific combat and would have been covered in protective osteoderms. It would have also had a barrel-like body, and short, robust limbs based on close relatives.
The stratigraphic position was stated as being from the Gobi Desert of either Mongolia or China due to the provenance being unknown at the time. In 2006, Clifford Miles and his brother Clark Miles attempted to publish the description of the skull in a Polish Journal but was promptly rejected as the specimen was seemingly obtained illegally from Mongolia. Two years later, the authors stated that the specimen had come from the Barun Goyot Formation but later stated that they could not confirm its origin. The skull would later be described and named in 2009. The publication was later criticised by palaeontologists such as Mark Norell, Phillip J. Currie and Bolortsetseg Minjin due to the questionable origins of the specimen.
The holotype specimen, INBR21004, consists of a skull with mandible and predentary. The type specimen is currently housed at the Victor Valley Museum in Apple Valley, California. The genus name, Minotaurasaurus, is derived from the Minotaur and the Ancient Greek word " sauros" (lizard), in reference to the bull-like appearance of the holotype skull. The species name, ramachandrani, honours V. S. Ramachandran, who purchased the type specimen.
In 2013, a Society of Vertebrate Paleontology abstract book mentioned the discovery of a second specimen of Minotaurasaurus (MAE 98 179) from the Uhkaa Tolgod locality of the late Campanian Djadochta Formation in the Nemegt Basin. The specimen consists of a skull, axis and first cervical half-ring, and it is part of the collection of the Mongolian Academy of Sciences. MAE 98 179 was reported as having insect burrows that continues into a pattern which is only seen in Late Cretaceous Gobi deposits. Penkalski & Tumanova (2016) would later describe the specimen, which was used to establish the Stratigraphy of the type specimen and the validity of the taxon, as before it was suggested by Arbour et al. (2014) and Arbour & Currie (2015) to be from the Barun Goyot Formation and a junior synonym of Tarchia. Its validity was also tested by Arbour & Currie (2012) by using a retrodeformation and finite element analysis, which found that many of its diagnostic features were likely not caused by deformation.
Penkalski & Tumanova (2016) established numerous distinguishing traits of Minotaurasaurus. The paroccipital processes are not present laterally to the squamosal horns due to presence of a small and dorsoventrally shallow Occipital bone. The skull roof possessing an unfused occiput. Basioccipital foramen that are either small or absent. Highly sculptured squamosal horns that are dorsoventrally narrow and cylindrical in shape. Non prominent nuchal caputegulae that angle caudolaterally. The presence of two distinct supraorbital apices. Frontal caputegulae that aren't arranged at right angles but with nasofrontal caputegulae that are elongated transversely and are ridge-like. The presence of a deep notch in the Lacrimal bone. The presence of two pairs of internarial osteoderms, unlike the presence of a single osteoderm as in Tarchia and Saichania. An overall small skull that is broad. A more horizontal Pterygoid bone body. A mandibular osteoderm that extends towards the front end of the tooth row. Other distinguishing traits include the occiput being more visible in dorsal view, an occipital condyle that is protrudes less towards the underside in caudal view and a skull that is proportionally lower and wider than that of Tarchia.
The epipterygoid, a small, triangular structure, separates the pterygoid from the maxilla. Instead of being vertical or even slightly overturned as seen in most ankylosaurids, the main body of the pterygoids is near horizontal which, as a result, makes the interpterygoid vacuity in palatal view. The occipital condyle lacks a neck and is heart-shaped. The occiput is low and rectangular in shape. The paroccipital processes fall well short of the medial edge of the squamosal horn. Both the basisphenoid and basioccipital are fused together, with the sutural area being expanded as a ridge. This ridge marks the insertion for the rectus capitis and longus capitis muscles. Both the left and right jugal horns thrust more towards the sides than towards the underside. Towards the sides of the tooth row is a broad maxillary shelf that extends beneath the middle of the orbit. A long, narrow osteoderm is partially fused along each side of the mandible but does not extend dorsally onto the lateral surface. The tooth row is positioned along the margins of the dentary. The ventral half of the mandible has a rough texture on the lateral surface, while the dorsal half of the mandible has a smooth texture. The position of the cheeks on the lower jaws is marked by the boundary between the smooth and the textured surfaces during occlusion as it is opposite to the lateral edge of the maxillary shelf. The coronoid process is small and low, and is present towards the front of the base of the process. The predentary is subtriangular in cross-section and bears numerous nutrient foramina to serve the rhamphotheca on the dorsal surface. The left dentary preserves 15 teeth and alveoli in the left dentary and 16 in the right dentary.
A limited phylogenetic analysis conducted Penkalski & Tumanova (2016) is reproduced below.
The results of an earlier analysis by Thompson et al. (2012) are reproduced below.
The type specimen of Minotaurasaurus may have had a pair of small osteoderms below the orbits that were homologous to the posterior cheek plates of nodosaurids such as Panoplosaurus and Edmontonia. The presence of these osteoderms at the level of the last three maxillary teeth suggests that either the cheek did not extend as anteriorly as in Panoplosaurus and Edmontonia or an anteriorly extended bucca was present but did not embed extensive cheek plates.
Specimens of Minotaurasaurus likely originated from the lower Bayn Dzak Member of the Djadochta Formation, which have also yielded specimens of the dromaeosaurids Velociraptor mongoliensis and Tsaagan; the halszkaraptorine Halszkaraptor; the troodontids Byronosaurus and Saurornithoides;Norell, M.A., Makovicky, P.J. & Clark, J.M., 2000, "A new troodontid theropod from Ukhaa Tolgod, Mongolia", Journal of Vertebrate Paleontology 20(1): 7-11 the oviraptorids Citipati, Oviraptor and Khaan; the alvarezsaurid Shuvuuia;Chiappe, L.M., Norell, M. A., and Clark, J. M. (1998). "The skull of a relative of the stem-group bird Mononykus." Nature, 392(6673): 275-278. the ankylosaurid Pinacosaurus; the ceratopsian Protoceratops; an indeterminate hadrosauroid; and an indeterminate azhdarchid. The upper Turgrugyin Member has yielded the dromaeosaurid Velociraptor mongoliensis; the halszkaraptorine Mahakala; the ornithomimosaurs Aepyornithomimus and an indeterminate ornithomimosaur; the oviraptorosaur Avimimus; the ceratopsians Protoceratops and Udanoceratops; and an indeterminate tyrannosaurid.
Skull
Classification
Paleobiology
Feeding
Paleoenvironment
See also
|
|