A microlith is a small stone tool usually made of flint or chert and typically a centimetre or so in length and half a centimetre wide. They were made by humans from around 60,000 years ago, across Europe, Africa, Asia and Australia. The microliths were used in spear points and
/ref>
Microliths are produced from either a small blade (microblade) or a larger blade-like piece of flint by abrupt or truncated retouching, which leaves a very typical piece of waste, called a microburin. The microliths themselves are sufficiently worked so as to be distinguishable from workshop waste or accidents.
Two families of microliths are usually defined: laminar and geometric. An assemblage of microliths can be used to date an archeological site. Laminar microliths are slightly larger, and are associated with the end of the Upper Paleolithic and the beginning of the Epipaleolithic era; geometric microliths are characteristic of the Mesolithic and the Neolithic. Geometric microliths may be triangular, trapezoid or lunate. Microlith production generally declined following the introduction of agriculture (8000 BCE) but continued later in cultures with a deeply rooted hunting tradition.
Regardless of type, microliths were used to form the points of hunting weapons, such as and (in later periods) arrows, and other artifacts and are found throughout Africa, Asia and Europe. They were utilised with wood, bone, resin and fiber to form a composite tool or weapon, and traces of wood to which microliths were attached have been found in Sweden, Denmark and England. An average of between six and eighteen microliths may often have been used in one spear or harpoon, but only one or two in an arrow. The shift from earlier larger tools had an advantage. Often the haft of a tool was harder to produce than the point or edge: replacing dull or broken microliths with new easily portable ones was easier than making new hafts or handles.
The next group contains a number of points from the Middle East characterized as cultural markers.
The Adelaide point is found in Australia. Its construction, based on truncations on a blade, has a nearly trapezoidal form. The Adelaide point emphasizes the range of variation in both time and culture of the laminar microliths; it also shows their technological differences, but sometimes morphological similarities, with geometric microliths. Laminar microliths can also sometimes be described as trapezoidal, triangular or lunate.Geometric shapes, as we have seen, are present in many laminar microliths: for example the Dufour bladelet is an elongated lunate shape, the El-Emireh point is a triangle and the Adelaide point is a trapeze, the El-Wad point is spindle shaped; and there are many other examples. However, they are distinct from the geometric microliths because of the strokes used in the manufacture of geometric microliths, which mainly involved the microburin technique.
Geometric microliths, though rare, are present as trapezoids in Northwest Africa in the Iberomaurusian. They later appear in Europe in the Magdalenian initially as elongated triangles and later as trapezoids (although the microburin technique is seen from the Perigordian), they are mostly seen during the Epipaleolithic and the Neolithic. They remained in existence even into the Copper Age and Bronze Age, competing with "leafed" and then metallic arrowheads.
Archeological findings and the analysis of wear marks, or use-wear analysis, has shown that, predictably, the tips of , and other light projectiles of varying size received the most wear. Microliths were also used from the Neolithic on , although a decline in this use coincided with the appearance of bifacial or "leafed" arrowheads that became widespread in the Chalcolithic period, or Copper Age (that is, stone arrowheads were increasingly made by a different technique during this later period).
Backed edge bladelets are particularly abundant at a site in France that preserves habitation from the late Magdalenian – the Pincevent. In the remains of some of the hearths at this location, bladelets are found in groups of three, perhaps indicating that they were mounted in threes on their handles. A javelin tip made of horn has been found at this site with grooves made for flint bladelets that could have been secured using a resinous substance. Signs of much wear and tear have been found on some of these finds.
Specialists have carried out lithic analysis on artefacts, but it has sometimes proved difficult to distinguish those fractures made during the process of fashioning the flint implement from those made during its use. Microliths found at Hengistbury Head in Dorset, England, show features that can be confused with chisel marks, but which might also have been produced when the tip hit a hard object and splintered. Microliths from other locations have presented the same problems of interpretation.M. Lenoir has found knapping similar to that used in chiseled bladelets from Gironde, but considered this to be a coincidence and attributed the marks to the fact that the microliths were mounted on the tip of a projectile. A similar line of enquiry has also been followed by Lawrence H. Keeley, who has studied a wide range of bladelets from the French site at Buisson Campin, in Verberie, Oise.
An exceptional piece of evidence for the use of microliths has been found in the excavations of the cave at Lascaux in the French Dordogne. Twenty backed edge bladelets were found with the remains of a resinous substance and the imprint of a circular handle (a horn). It appears that the bladelets might have been fixed in groups like the teeth of a harpoon or similar weapon.
In all these locations, the microliths found have been backed edge blades, tips and crude flakes. Despite the great number of geometric microliths that have been found in Western Europe, few examples show any clear evidence of their use, and all the examples are from the Mesolithic or Neolithic periods. Despite this, there is unanimity amongst researchers that these items were used to increase the penetrating potential of light projectiles such as , , and .
Geographically they are found across almost all of continental Australia, except for the far north, but are particularly common in south-east Australia. Historically, backed artefacts were divided into asymmetrical Bondi points and symmetrical geometric microliths, however there appears to be no geographic or temporal pattern in the distribution of these shapes. Backed artefact manufacturing workshops have been identified at Ngungara show significant variation in shape, which has been linked to the need to replace components of composite tools.
Several studies in the production of backed artefacts have linked identified Heat treating as a key component as well as the use of large flank blanks.
Functional studies of backed artefacts from south-eastern Australia show that they were multipurpose and multifunctional tools with a similar range of uses as unretouched flakes found at the same sites. There is one unambiguous example of them being used as part of composite weapon, either a spear or a club, as 17 backed artefacts were found embedded into the skeleton of an adult male dated to approximately 4000 years BP in the Sydney suburb of Narrabeen.
One of the skeletons that has been found has a geometric microlith lodged in one of its vertebra. All indications suggest that the person died because of this projectile; whether by intention or by accident is unknown. It is widely agreed that geometric microliths were mainly used in hunting and fishing, but they may also have been used as .
According to radiocarbon measurements, the Loshult arrows are dated to around 8000 BC, which represents a middle part of the Maglemose culture. This is close to the Early Boreal/Late Boreal transition.Lars Larsson (2018), The Loshult Arrows: Cultural Relations and Chronology academia.edu
The study of English and European artifacts in general has revealed that projectiles were made with a widely variable number of microliths: in Tværmose there was only one, in Loshult there were two (one for the tip and the other as a fin), in White Hassocks, in West Yorkshire, more than 40 have been found together; the average is between 6 and 18 pieces for each projectile.
During the Epipaleolithic and the Mesolithic, the presence of laminar or geometric microliths serves to date the deposits of different cultural traditions. For instance, in the Atlas Mountains of northwest Africa, the end of the Upper Paleolithic period coincides with the end of the Aterian tradition of producing laminar microliths, and deposits can be dated by the presence or absence of these artifacts. In the Near East, the laminar microliths of the Kebarian culture were superseded by the geometric microliths of the Natufian tradition a little more than 11,000 years ago. This pattern is repeated throughout the Mediterranean basin and across Europe in general.Professor Fortea has been able to distinguish two traditions in the Epipaleolithic period based in the Spanish Mediterranean , the "Microlaminar Complex" (with three separate phases: that of Sant Grégori de Falset, that based on the Cova de Les Mallaetes in Valencia and that of the Epigravettian) and the "Geometric Complex" (with two phases: the Filador and the Cocina, which receive their names from caves located on the eastern coast of Spain).
A similar thing is found in England, where the preponderance of elongated microliths, as opposed to other frequently occurring forms, has permitted the Mesolithic to be separated into two phases: the Earlier Mesolithic of about 8300–6700 BCE, or the ancient and laminar Mesolithic, and the Later Mesolithic, or the recent and geometric Mesolithic. Deposits can be thus dated based upon the assemblage of artifacts found. The same author has suggested that the geometric microliths may replace one or two rows of teeth in the bone harpoons commonly found in the Upper Paleolithic at the end of the Upper Magdalanian (page 84).
|
|