The Mesozoic Era is the era of Earth's geological history, lasting from about , comprising the Triassic, Jurassic and Cretaceous Periods. It is characterized by the dominance of Archosaur reptiles such as the dinosaurs, and of Gymnosperm such as , ginkgoaceae and Araucariaceae conifers; a hot greenhouse climate; and the tectonic break-up of Pangaea. The Mesozoic is the middle of the three eras since complex life evolved: the Paleozoic, the Mesozoic, and the Cenozoic.
The era began in the wake of the Permian–Triassic extinction event, the largest mass extinction in Earth's history, and ended with the Cretaceous–Paleogene extinction event, another mass extinction whose victims included the non-avian dinosaurs, Pterosaur, Mosasaur, and Plesiosaur. The Mesozoic was a time of significant tectonic, climatic, and evolutionary activity. The supercontinent Pangaea began to break apart into separate landmasses. The climate of the Mesozoic was varied, alternating between warming and cooling periods. Overall, however, the Earth was hotter than it is today.
Dinosaurs first appeared in the Mid-Triassic, and became the dominant terrestrial vertebrates in the Late Triassic or Early Jurassic, occupying this position for about 150 or 135 million years until their demise at the end of the Cretaceous. Avialae appeared in the Jurassic, having evolved from a branch of theropoda dinosaurs, then Aves appeared in the Cretaceous. The first also appeared during the Mesozoic, but would remain small—less than 15 kg (33 lb)—until the Cenozoic. Angiosperm appeared in the Early Cretaceous and would rapidly diversify through the end of the era, replacing Conifer and other gymnosperms ( sensu lato), such as ginkgoales, cycads and bennettitales as the dominant group of plants.
The current name was proposed in 1840 by the British geologist John Phillips (1800–1874). "Mesozoic" literally means 'middle life', deriving from the Ancient Greek prefix meso- ( 'between') and zōon ( 'animal, living being').See:
In this way, the Mesozoic is comparable to the Cenozoic () and Paleozoic ('old life') eras as well as the Proterozoic ('earlier life') Eon.
The Mesozoic Era was originally described as the "secondary" era, following the "primary" (Paleozoic), and preceding the Tertiary.
The lower boundary of the Mesozoic is set by the Permian–Triassic extinction event, during which it has been estimated that up to 90–96% of marine species became extinction although those approximations have been brought into question with some paleontologists estimating the actual numbers as low as 81%. It is also known as the "Great Dying" because it is considered the largest mass extinction in the Earth's history. The upper boundary of the Mesozoic is set at the Cretaceous–Paleogene extinction event (or K–Pg extinction event), which may have been caused by an asteroid impactor that created Chicxulub Crater on the Yucatán Peninsula. Towards the Late Cretaceous, large volcanic eruptions are also believed to have contributed to the Cretaceous–Paleogene extinction event. Approximately 50% of all genera became extinct, including all of the non-bird dinosaurs.
The Early Triassic, about 252 to 247 million years ago, was dominated by deserts in the interior of the Pangaea supercontinent. The Earth had just witnessed a massive die-off in which 95% of all life became extinct, and the most common vertebrate life on land were Lystrosaurus, , and Euparkeria along with many other creatures that managed to survive the Permian extinction. reached peak diversity during the early Triassic. '' (a prosauropod)]]
The Middle Triassic, from 247 to 237 million years ago, featured the beginnings of the breakup of Pangaea and the opening of the Tethys Ocean. Ecosystems had recovered from the Permian extinction. Algae, sponge, corals, and crustaceans all had recovered, and new aquatic reptiles evolved, such as Ichthyosauria and . On land, pine forests flourished, as did groups of insects such as mosquitoes and fruit flies. Reptiles began to get bigger and bigger, and the first crocodilians and dinosaurs evolved, which sparked competition with the large amphibians that had previously ruled the freshwater world, respectively mammal-like reptiles on land. Following the bloom of the Middle Triassic, the Late Triassic, from 237 to 201 million years ago, featured frequent heat spells and moderate precipitation (10–20 inches per year). The recent warming led to a boom of dinosaurian evolution on land as the continents began to separate from each other (Nyasasaurus from 243 to 210 million years ago, approximately 235–30 ma, some of them separated into Sauropodomorphs, Theropods and Herrerasaurids), as well as the first . During the Late Triassic, some advanced gave rise to the first Mammaliaformes. All this climatic change, however, resulted in a large die-out known as the Triassic–Jurassic extinction event, in which many archosaurs (excluding pterosaurs, dinosaurs and ), most , and almost all large amphibians became extinct, as well as 34% of marine life, in the Earth's fourth mass extinction event. The cause is debatable; flood basalt eruptions at the Central Atlantic magmatic province is cited as one possible cause.
The Early Jurassic spans from 200 to 175 million years ago. The climate was tropical and much more humid than the Triassic, as a result of the large seas appearing between the land masses. In the oceans, plesiosaurs, ichthyosaurs and ammonites were abundant. On land, dinosaurs and other archosaurs staked their claim as the dominant race, with theropods such as Dilophosaurus at the top of the food chain. The first true crocodiles evolved, pushing the large amphibians to near extinction. All-in-all, archosaurs rose to rule the world. Meanwhile, the first true mammals evolved, remaining relatively small, but spreading widely; the Jurassic Castorocauda, for example, had adaptations for swimming, digging and catching fish. Fruitafossor, from the late Jurassic Period about 150 million years ago, was about the size of a chipmunk, and its teeth, forelimbs and back suggest that it dug open the nests of social insects (probably , as ants had not yet appeared) ; Volaticotherium was able to glide for short distances, such as modern . The first multituberculates such as Rugosodon evolved.
The Middle Jurassic spans from 175 to 163 million years ago. During this epoch, dinosaurs flourished as huge herds of sauropods, such as Brachiosaurus and Diplodocus, filled the fern prairies, chased by many new predators such as Allosaurus. Conifer forests made up a large portion of the forests. In the oceans, plesiosaurs were quite common, and ichthyosaurs flourished. This epoch was the peak of the reptiles. '']]
The Late Jurassic spans from 163 to 145 million years ago. During this epoch, the first , such as Archaeopteryx, evolved from small coelurosaurian dinosaurs. The increase in sea levels opened up the Atlantic seaway, which has grown continually larger until today. The further separation of the continents gave opportunity for the diversification of new dinosaurs.
The Early Cretaceous spans from 145 to 100 million years ago. The Early Cretaceous saw the expansion of seaways and a decline in diversity of sauropods, stegosaurs, and other high-browsing groups, with sauropods particularly scarce in North America. Seasons came back into effect and the poles got seasonally colder, but some dinosaurs still inhabited the polar forests year round, such as Leaellynasaura and Muttaburrasaurus. The poles were too cold for crocodiles, and became the last stronghold for large amphibians such as Koolasuchus. Pterosaurs got larger as genera such as Tapejara and Ornithocheirus evolved. Mammals continued to expand their range: produced fairly large, wolverine-like predators such as Repenomamus and Gobiconodon, early began to expand into and , and cimolodont went on to become common in the fossil record.
The Late Cretaceous spans from 100 to 66 million years ago. The Late Cretaceous featured a cooling trend that would continue in the Cenozoic Era. Eventually, tropics were restricted to the equator and areas beyond the tropic lines experienced extreme seasonal changes in weather. Dinosaurs still thrived, as new taxa such as Tyrannosaurus, Ankylosaurus, Triceratops and hadrosaurs dominated the food web. In the oceans, mosasaurs ruled, filling the role of the ichthyosaurs, which, after declining, had disappeared in the Cenomanian-Turonian boundary event. Though had gone extinct in the same event, long-necked plesiosaurs such as Elasmosaurus continued to thrive. Flowering plants, possibly appearing as far back as the Triassic, became truly dominant for the first time. Pterosaurs in the Late Cretaceous declined for poorly understood reasons, though this might be due to tendencies of the fossil record, as their diversity seems to be much higher than previously thought. Birds became increasingly common and diversified into a variety of Enantiornithes and Ornithurae forms. Though mostly small, marine hesperornithes became relatively large and flightless, adapted to life in the open sea. Metatherians and primitive eutherian also became common and even produced large and specialised genera such as Didelphodon and Schowalteria. Still, the dominant mammals were multituberculates, in the north and in the south. At the end of the Cretaceous, the Deccan Traps and other volcanic eruptions were poisoning the atmosphere. As this continued, it is thought that a large meteor smashed into Earth 66 million years ago, creating the Chicxulub Crater in an event known as the K-Pg Extinction (formerly K-T), the fifth and most recent mass extinction event, in which 75% of life became extinct, including all non-avian dinosaurs.
This orogeny was related to the opening of the Arctic Ocean and suturing of the North China and Siberian cratons to Asia. In contrast, the era featured the dramatic Rift of the supercontinent Pangaea, which gradually split into a northern continent, Laurasia, and a southern continent, Gondwana. This created the passive continental margin that characterizes most of the Atlantic coastline (such as along the U.S. East Coast) today.Stanley, Steven M. Earth System History. New York: W.H. Freeman and Company, 1999.
By the end of the era, the continents had rifted into nearly their present forms, though not their present positions. Laurasia became North America and Eurasia, while Gondwana split into South America, Africa, Australia, Antarctica and the South Asia, which collided with the plate during the Cenozoic, giving rise to the .
Sea levels began to rise during the Jurassic, probably caused by an increase in seafloor spreading. The formation of new crust beneath the surface displaced ocean waters by as much as above today's sea level, flooding coastal areas. Furthermore, Pangaea began to rift into smaller divisions, creating new shoreline around the Tethys Ocean. Temperatures continued to increase, then began to stabilize. Humidity also increased with the proximity of water, and deserts retreated.
The climate of the Cretaceous is less certain and more widely disputed. Probably, higher levels of carbon dioxide in the atmosphere are thought to have almost eliminated the north–south temperature gradient: temperatures were about the same across the planet, and about 10°Celsius higher than today. The circulation of oxygen to the deep ocean may also have been disrupted, preventing the decomposition of large volumes of organic matter, which was eventually deposited as "black shale".
Different studies have come to different conclusions about the amount of oxygen in the atmosphere during different parts of the Mesozoic, with some concluding oxygen levels were lower than the current level (about 21%) throughout the Mesozoic,Robert Berner, John M. VandenBrooks and Peter D. Ward, 2007, Oxygen and Evolution. Science 27 April 2007, Vol. 316 no. 5824 pp. 557–58 . A graph showing the reconstruction from this paper can be found here, from the webpage Paleoclimate – The History of Climate Change.Robert Berner 2006 GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–64. See the dotted line in Fig. 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F. Harrison, Alexander Kaiser and John M. VandenBrooks some concluding they were lower in the Triassic and part of the Jurassic but higher in the Cretaceous,Robert Berner, Robert A., 2009, Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am. J. Sci. 309 no. 7, 603–06. A graph showing the reconstructed levels in this paper can be found on p. 31 of the book Living Dinosaurs by Gareth Dyke and Gary Kaiser.Robert Berner, Canfield D. E. 1989 A new model for atmospheric oxygen over phanerozoic time. Am. J. Sci. 289, 333–61. See the solid line in Fig. 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F. Harrison, Alexander Kaiser and John M. VandenBrooksRobert Berner, et al., 2003, Phanerozoic atmospheric oxygen, Annu. Rev. Earth Planet. Sci., V, 31, p. 105–34. See the graph near the bottom of the webpage Phanerozoic Eon and some concluding they were higher throughout most or all of the Triassic, Jurassic and Cretaceous.Glasspool, I.J., Scott, A.C., 2010, Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal, Nature Geoscience, 3, 627–30Bergman N. M., Lenton T. M., Watson A. J. 2004 COPSE: a new model of biogeochemical cycling over Phanaerozoic time. Am. J. Sci. 304, 397–437. See the dashed line in Fig. 1 of Atmospheric oxygen level and the evolution of insect body size by Jon F. Harrison, Alexander Kaiser and John M. VandenBrooks
radiated during the early Cretaceous, first in the tropics, but the even temperature gradient allowed them to spread toward the poles throughout the period. By the end of the Cretaceous, angiosperms dominated tree floras in many areas, although some evidence suggests that biomass was still dominated by cycads and until after the Cretaceous–Paleogene extinction. Some plant species had distributions that were markedly different from succeeding periods; for example, the Schizeales, a fern order, were skewed to the Northern Hemisphere in the Mesozoic, but are now better represented in the Southern Hemisphere.C.Michael Hogan. 2010. Fern. Encyclopedia of Earth. National council for Science and the Environment . Washington, DC
Recent research indicates that it took much longer for the reestablishment of complex ecosystems with high biodiversity, complex food webs, and specialized animals in a variety of niches, beginning in the mid-Triassic 4 million to 6 million years after the extinction, and not fully proliferated until 30 million years after the extinction. During the Triassic, terrestrial herbivores avoided competition through significant niche partitioning by generally occupying highly distinct guilds. Animal life was then dominated by various archosaurs: , pterosaurs, and aquatic reptiles such as ichthyosaurs, plesiosaurs, and .
The climatic changes of the late Jurassic and Cretaceous favored further adaptive radiation. The Jurassic was the height of archosaur diversity, and the first and mammals also appeared. Some have argued that diversified in symbiosis with angiosperms, because insect anatomy, especially the mouth parts, seems particularly well-suited for flowering plants. However, all major insect mouth parts preceded angiosperms, and insect diversification actually slowed when they arrived, so their anatomy originally must have been suited for some other purpose.
|
|