[[File:River Levee Cross Section Figure.svg|thumb|Components of an artificial levee: ]]
A levee ( or ), dike (American English), dyke (Commonwealth English), embankment, floodbank, or stop bank is an elevated ridge, natural or artificial, alongside the river banks of a river, often intended to flood control of the area adjoining the river. It is usually soil and often runs parallel to the course of a river in its floodplain or along low-lying coastlines.
Naturally occurring levees form on river following flooding. Sediment and alluvium are deposited on the banks and settle, forming a ridge that increases the river channel's capacity. Alternatively, levees can be artificially constructed from fill dirt, designed to regulate water levels. In some circumstances, artificial levees can be environmentally damaging.
Ancient civilizations in the Indus Valley, ancient Egypt, Mesopotamia and China all built levees. Today, levees can be found around the world, and failures of levees due to erosion or other causes can be major disasters, such as the catastrophic 2005 levee failures in Greater New Orleans that occurred as a result of Hurricane Katrina.
The modern word dike or dyke most likely derives from the Dutch language word dijk, with the construction of dikes well attested as early as the 11th century. The Westfriese Omringdijk, completed by 1250, was formed by connecting existing older dikes. The Roman chronicler Tacitus mentions that the rebellious Batavi pierced dikes to flood their land and to protect their retreat (70 Common Era).Tacitus Histories V 19 The word dijk originally indicated both the trench and the bank. It closely parallels the English verb to dig.
In Anglo-Saxon, the word dic already existed and was pronounced as dick in northern England and as ditch in the south. Similar to Dutch, the English origins of the word lie in digging a trench and forming the upcast soil into a bank alongside it. This practice has meant that the name may be given to either the excavation or to the bank. Thus Offa's Dyke is a combined structure and Car Dyke is a trench – though it once had raised banks as well. In the English Midlands and East Anglia, and in the United States, a dike is what a ditch is in the south of England, a property-boundary marker or drainage channel. Where it carries a stream, it may be called a running dike as in Rippingale Running Dike, which leads water from the catchwater drain, Car Dyke, to the South Forty Foot Drain in Lincolnshire (TF1427). The Weir Dike is a soak dike in Bourne North Fen, near Twenty and alongside the River Glen, Lincolnshire. In the Norfolk and Suffolk The Broads, a dyke may be a drainage ditch or a narrow artificial channel off a river or broad for access or mooring, some longer dykes being named, e.g., Candle Dyke.
In parts of United Kingdom, particularly Scotland and Northern England, a dyke may be a field wall, generally made with dry stone.
Levees can be permanent earthworks or emergency constructions (often of ) built hastily in a flood emergency.
Some of the earliest levees were constructed by the Indus Valley civilization (in Pakistan and North India from ) on which the agrarian life of the Harappan peoples depended. Levees were also constructed over 3,000 years ago in ancient Egypt, where a system of levees was built along the left bank of the River Nile for more than , stretching from modern Aswan to the Nile Delta on the shores of the Mediterranean. The civilizations and ancient China also built large levee systems.Needham, Joseph. (1971). Science and Civilisation in China: Volume 4, Physics and Physical Technology, Part 3, Civil Engineering and Nautics. Cambridge: Cambridge University Press; Brian Lander. "State Management of River Dikes in Early China: New Sources on the Environmental History of the Central Yangzi Region." T’oung Pao 100.4–5 (2014): 325–62. Because a levee is only as strong as its weakest point, the height and standards of construction have to be consistent along its length. Some authorities have argued that this requires a strong governing authority to guide the work and may have been a catalyst for the development of systems of governance in early civilizations. However, others point to evidence of large-scale water-control earthen works such as canals and/or levees dating from before King Scorpion in Predynastic Egypt, during which governance was far less centralized.
Another example of a historical levee that protected the growing city-state of Mēxihco-Tenōchtitlan and the neighboring city of Tlatelōlco, was constructed during the early 1400s, under the supervision of the tlahtoani of the altepetl Texcoco, Nezahualcoyotl. Its function was to separate the brackish waters of Lake Texcoco (ideal for the agricultural technique Chināmitls) from the fresh potable water supplied to the settlements. However, after the Europeans destroyed Tenochtitlan, the levee was also destroyed and flooding became a major problem, which resulted in the majority of The Lake being drained in the 17th century.
Levees are usually built by piling earth on a cleared, level surface. Broad at the base, they taper to a level top, where temporary embankments or sandbags can be placed. Because flood discharge intensity increases in levees on both river banks, and because silt deposits raise the level of Stream bed, planning and auxiliary measures are vital. Sections are often set back from the river to form a wider channel, and flood valley basins are divided by multiple levees to prevent a single breach from flooding a large area. A levee made from stones laid in horizontal rows with a bed of thin turf between each of them is known as a spetchel.
Artificial levees require substantial engineering. Their surface must be protected from erosion, so they are planted with vegetation such as Bermuda grass in order to bind the earth together. On the land side of high levees, a low terrace of earth known as a banquette is usually added as another anti-erosion measure. On the river side, erosion from strong waves or currents presents an even greater threat to the integrity of the levee. The effects of erosion are countered by planting suitable vegetation or installing stones, boulders, weighted matting, or concrete . Separate ditches or drainage tiles are constructed to ensure that the foundation does not become waterlogged.
The Mississippi levee system represents one of the largest such systems found anywhere in the world. It comprises over of levees extending some along the Mississippi, stretching from Cape Girardeau, Missouri, to the Mississippi delta. They were begun by French settlers in Louisiana in the 18th century to protect the city of New Orleans.Kemp, Katherine. The Mississippi Levee System and the Old River Control StructureThe Louisiana Environment. Tulane.edu The first Louisiana levees were about high and covered a distance of about along the riverside. The U.S. Army Corps of Engineers, in conjunction with the Mississippi River Commission, extended the levee system beginning in 1882 to cover the riverbanks from Cairo, Illinois to the mouth of the Mississippi delta in Louisiana. By the mid-1980s, they had reached their present extent and averaged in height; some Mississippi levees are as high as . The Mississippi levees also include some of the longest continuous individual levees in the world. One such levee extends southwards from Pine Bluff, Arkansas, for a distance of some . The scope and scale of the Mississippi levees has often been compared to the Great Wall of China. Republished in
The United States Army Corps of Engineers (USACE) recommends and supports cellular confinement technology (geocells) as a best management practice. Particular attention is given to the matter of surface erosion, wave overtopping prevention and protection of levee crest and downstream slope. Reinforcement with geocells provides tensile force to the soil to better resist instability.
Artificial levees can lead to an elevation of the natural riverbed over time; whether this happens or not and how fast, depends on different factors, one of them being the amount and type of the bed load of a river. Alluvium rivers with intense accumulations of sediment tend to this behavior. Examples of rivers where artificial levees led to an elevation of the riverbed, even up to a point where the riverbed is higher than the adjacent ground surface behind the levees, are found for the Yellow River in China and the Mississippi in the United States.
Coastal flood prevention levees are also common along the inland coastline behind the Wadden Sea, an area devastated by many historic floods. Thus the peoples and governments have erected increasingly large and complex flood protection levee systems to stop the sea even during storm floods. The biggest of these are the huge levees in the Netherlands, which have gone beyond just defending against floods, as they have aggressively taken back land that is below mean sea level.
Deposition of levees is a natural consequence of the flooding of meandering rivers which carry high proportions of suspended sediment in the form of fine sands, silts, and muds. Because the carrying capacity of a river depends in part on its depth, the sediment in the water which is over the flooded banks of the channel is no longer capable of keeping the same number of fine sediments in suspension as the main thalweg. The extra fine sediments thus settle out quickly on the parts of the floodplain nearest to the channel. Over a significant number of floods, this will eventually result in the building up of ridges in these positions and reducing the likelihood of further floods and episodes of levee building.
If aggradation continues to occur in the main channel, this will make levee overtopping more likely again, and the levees can continue to build up. In some cases, this can result in the channel bed eventually rising above the surrounding floodplains, penned in only by the levees around it; an example is the Yellow River in China near the sea, where oceangoing ships appear to sail high above the plain on the elevated river.
Levees are common in any river with a high suspended sediment fraction and thus are intimately associated with channels, which also are more likely to occur where a river carries large fractions of suspended sediment. For similar reasons, they are also common in tidal creeks, where tides bring in large amounts of coastal silts and muds. High will cause flooding, and result in the building up of levees.
Sometimes levees are said to fail when water overtops the crest of the levee. This will cause flooding on the floodplains, but because it does not damage the levee, it has fewer consequences for future flooding.
Among various failure mechanisms that cause levee breaches, soil erosion is found to be one of the most important factors. Predicting soil erosion and scour generation when overtopping happens is important in order to design stable levee and . There have been numerous studies to investigate the erodibility of soils. Briaud et al. (2008)Briaud, J., Chen, H., Govindasamy, A., Storesund, R. (2008). Levee erosion by overtopping in New Orleans during the Katrina Hurricane. Journal of Geotechnical and Geoenvironmental Engineering. 134 (5): 618–632. used Erosion Function Apparatus (EFA) test to measure the erodibility of the soils and afterwards by using Chen 3D software, numerical simulations were performed on the levee to find out the velocity vectors in the overtopping water and the generated scour when the overtopping water impinges the levee. By analyzing the results from EFA test, an erosion chart to categorize erodibility of the soils was developed. Hughes and Nadal in 2009Hughes, S.A., Nadal, N.C. (2009). Laboratory study of combined wave overtopping and storm surge overflow of a levee. Coastal Engineering.56: 244–259 studied the effect of combination of wave overtopping and storm surge overflow on the erosion and scour generation in levees. The study included hydraulic parameters and flow characteristics such as flow thickness, wave intervals, surge level above levee crown in analyzing scour development. According to the laboratory tests, empirical correlations related to average overtopping discharge were derived to analyze the resistance of levee against erosion. These equations could only fit to the situation, similar to the experimental tests, while they can give a reasonable estimation if applied to other conditions.
Osouli et al. (2014) and Karimpour et al. (2015) conducted lab scale physical modeling of levees to evaluate score characterization of different levees due to floodwall overtopping.
Another approach applied to prevent levee failures is electrical resistivity tomography (ERT). This non-destructive geophysical method can detect in advance critical saturation areas in embankments. ERT can thus be used in monitoring of seepage phenomena in earth structures and act as an early warning system, e.g., in critical parts of levees or embankments.
Coastal flood prevention
Spur dykes or groynes
Natural examples
Failures and breaches
Negative impacts
See also
Notes
External links
|
|