Lampreys (sometimes inaccurately called lamprey eels) are a group of Agnatha comprising the order Petromyzontiformes , sole order in the class Petromyzontida. The adult lamprey is characterized by a toothed, funnel-like sucking mouth. The common name "lamprey" is probably derived from Latin lampetra, which may mean "stone licker" (lambere]] "to lick" + petra]] "stone"), though the etymology is uncertain. "Lamprey" is sometimes seen for the plural form.
About 38 extant species of lampreys are known, with around seven known extinct species. They are classified in three families—two small families in the Southern Hemisphere (Geotriidae, Mordaciidae) and one large family in the Northern Hemisphere (Petromyzontidae).
Genetic evidence suggests that lampreys are more closely related to hagfish, the only other living group of jawless fish, than they are to jawed vertebrates, forming the superclass Cyclostomi. The oldest fossils of stem-group lampreys are from the latest Devonian, around 360 million years ago, with modern-looking forms only appearing during the Jurassic, around 163 million years ago, with the modern families likely splitting from each sometime between the Middle Jurassic and the end of the Cretaceous.
Modern lampreys spend the majority of their lives in the juvenile "ammocoete" stage, where they burrow into the sediment and filter feeder. Adult carnivorous lampreys are the most well-known species, and feed by boring into the flesh of other fish (or in rare cases marine mammals) to consume flesh and/or Hematophagy; but only 18 species of lampreys engage in this predatory lifestyle (with Caspiomyzon suggested to feed on carrion rather than live prey). Of the 18 carnivorous species, nine Anadromous (some of them also have freshwater populations), and nine live exclusively in freshwater. All noncarnivorous forms are freshwater species. Adults of the noncarnivorous species do not feed; they live on reserves acquired as ammocoetes.
Lamprey distribution may be adversely affected by river habitat loss, overfishing, and pollution. In Britain, at the time of the 11th-century Norman Conquest of England, lampreys were found as far upstream in the River Thames as Petersham. The reduction of pollution in the Thames and River Wear has led to recent sightings in London and Chester-le-Street.
Distribution of lampreys may also be adversely affected by dams and other construction projects due to disruption of migration routes and obstruction of access to spawning grounds. Conversely, the construction of artificial channels has exposed new habitats for colonisation, notably in North America, where sea lampreys have become a significant introduced pest in the Great Lakes. Active programs to control lampreys are undergoing modifications due to concerns of drinking-water quality in some areas.
The brain of the lamprey is divided into the telencephalon, diencephalon, midbrain, cerebellum, and medulla.
Lampreys have been described as the only living vertebrates to have four eyes, having a single pair of regular eyes, as well as two , a pineal and parapineal one (the exception is members of Mordacia). The eyes of juvenile lampreys are poorly developed eyespot-like structures that are covered in translucent skin, while the eyes of adult lampreys are well developed. Accommodation is done by flattening the cornea, which pushes the lens towards the retina. The eye of family Mordaciidae possess just a single type of photoreceptor (rod-like), the family Petromyzontidae possess two photoreceptor types (a cone-like and a rod-like), and the family Geotriidae possesses five types of photoreceptors.
The Mouth, anterior to the , is responsible for attaching the animal, through suction, to either a stone or its prey. This then allows the tongue to make contact with the stone to rasp algae, or tear at the flesh of their prey to yield blood.
The last common ancestor of lampreys appears to have been specialized to feed on the blood and body fluids of other fish after metamorphosis. They attach their mouthparts to the target animal's body, then use three horny plates (laminae) on the tip of their piston-like tongue, one transversely and two longitudinally placed, to scrape through surface tissues until they reach body fluids. The teeth on their oral disc are primarily used to help the animal attach itself to its prey. Made of keratin and other proteins, lamprey teeth have a hollow core to give room for replacement teeth growing under the old ones. Some of the original blood-feeding forms have evolved into species that feed on both blood and flesh, and some have become specialized to eat flesh and may even invade the internal organs of the host. Tissue feeders can also involve the teeth on the oral disc in the excision of tissue. As a result, the flesh-feeders have smaller buccal glands as they do not require the production of anticoagulant continuously and mechanisms for preventing solid material entering the branchial pouches, which could otherwise potentially clog the gills. A study of the stomach content of some lampreys has shown the remains of intestines, fins and vertebrae from their prey.
Close to the jaws of juvenile lampreys, a muscular flap-like structure called the velum is present, which serves to generate a water current towards the mouth opening, which enables feeding and respiration.
The unique morphological characteristics of lampreys, such as their cartilage skeleton, suggest they are the sister taxon (see cladistics) of all living jawed vertebrates (gnathostomes). They are usually considered the most basal group of the Vertebrate. Instead of true vertebrae, they have a series of cartilaginous structures called arcualia arranged above the notochord. Hagfish, which resemble lampreys, have traditionally been considered the sister taxon of the true vertebrates (lampreys and gnathostomes) but DNA evidence suggests that they are in fact the sister taxon of lampreys.
The heart of the lamprey is anterior to the intestines. It contains the sinus, one atrium, and one ventricle protected by the pericardial cartilages.
The pineal gland, a photosensitive organ regulating melatonin production by capturing light signals through the photoreceptor cell converting them into intercellular signals of the lamprey is located in the midline of its body, for lamprey, the Parietal eye is accompanied by the parapineal organ.
One of the key physical components to the lamprey are the intestines, which are located ventral to the notochord. Intestines aid in osmoregulation by intaking water from its environment and desalinating the water they intake to an Isosmotic state with respect to blood, and are also responsible for digestion. have shown that lampreys are among the most energy-efficient swimmers. Their swimming movements generate low-pressure zones around the body, which pull rather than push their bodies through the water.
Different species of lamprey have many shared physical characteristics. The same anatomical structure can serve different functions in the lamprey depending on whether or not it is carnivorous. The mouth and suction capabilities of the lamprey not only allow it to cling to a fish as a Parasitism, but provide it with limited climbing ability so that it can travel upstream and up ramps or rocks to breed. This ability has been studied in an attempt to better understand how lampreys battle the current and move forward despite only being able to hold onto the rock at a single point. Some scientists are also hoping to design ramps that will optimize the lamprey's climbing ability, as lampreys are valued as food in the Northwest United States and need to travel upstream to reproduce.
Many lampreys exhibit countershading, a form of camouflage. Similarly to many other aquatic species, most lampreys have a dark-colored back, which enables them to blend in with the ground below when seen from above by a predator. Their light-colored undersides allow them to blend in with the bright air and water above them if a predator sees them from below.
Lamprey coloration can also vary according to the region and specific environment in which the species is found. Some species can be distinguished by their unique markings – for example, Pouched lamprey individuals display two bluish stripes running the length of its body as an adult. These markings can also sometimes be used to determine what stage of the life cycle the lamprey is in; Pouched lamprey individuals lose these stripes when they approach the reproductive phase and begin to travel upstream. Another example is Petromyzon marinus, which shifts to more of an orange color as it reaches the reproductive stage in its life cycle.
The rate of water moving across the ammocoetes' feeding apparatus is the lowest recorded in any suspension feeding animal, and they therefore require water rich in nutrients to fulfill their nutritional needs. While the majority of (invertebrate) suspension feeders thrive in waters containing under 1 mg suspended organic solids per litre (<1 mg/L), ammocoetes demand minimum 4 mg/L, with concentrations in their habitats having been measured up to 40 mg/L.
During metamorphosis the lamprey loses both the gallbladder and the biliary tract, and the endostyle turns into a thyroid gland.
Some species, including those that are not carnivorous and do not feed even following metamorphosis, live in freshwater for their entire lifecycle, spawning and dying shortly after metamorphosing. In contrast, many species are anadromous and migrate to the sea, beginning to prey on other animals while still swimming downstream after their metamorphosis provides them with eyes, teeth, and a sucking mouth. Those that are anadromous are carnivorous, feeding on fishes or marine mammals.
Anadromous lampreys spend up to four years in the sea before migrating back to freshwater, where they spawn. Adults create nests (called redds) by moving rocks, and females release thousands of eggs, sometimes up to 100,000. The male, intertwined with the female, fertilizes the eggs simultaneously. Being semelparous, both adults die after the eggs are fertilized.
Research on sea lampreys has revealed that sexually mature males use a specialized heat-producing tissue in the form of a ridge of fat cells near the anterior dorsal fin to stimulate females. After having attracted a female with pheromones, the heat detected by the female through body contact will encourage spawning.
Some researchers have classified lampreys as the sole surviving representatives of the Linnean taxonomy class Cephalaspidomorphi. Cephalaspidomorpha is sometimes given as a subclass of the Cephalaspidomorphi. Fossil evidence now suggests lampreys and cephalaspids acquired their shared characters by convergent evolution.
The debate about their systematics notwithstanding, lampreys constitute a single order Petromyzontiformes. Sometimes still seen is the alternative spelling "Petromyzoniformes", based on the argument that the type genus is Petromyzon and not "Petromyzonta" or similar. Throughout most of the 20th century, both names were used indiscriminately, even by the same author in subsequent publications. In the mid-1970s, the ICZN was called upon to fix one name or the other, and after much debate had to resolve the issue by voting. Thus, in 1980, the spelling with a "t" won out, and in 1981, it became official that all higher-level taxa based on Petromyzon have to start with "Petromyzont-".
Phylogeny based on Brownstein & Near, 2023.
Recent studies differ regarding the timing of the last common ancestor of all living lampreys, with some suggesting a Middle Jurassic date, around 175 million years ago, while other studies have suggested a younger split, dating to the Late Cretaceous. The older date study posited that the Northern and Southern Hemisphere lampreys diverged as part of the breakup of Pangea, while the Late Cretaceous study suggested that modern lampreys emerged in the Southern Hemisphere. It is thought that most modern lamprey diversity emerged during the Cenozoic, particularly within the last 10–20 million years.
Oftentimes adult Lancelet and lamprey larvae are compared by anatomists due to their similarities. Similarities between adult amphioxus and lamprey larvae include a pharynx with pharyngeal slits, a notochord, a dorsal hollow nerve cord and a series of that extend anterior to the otic vesicle.
In a series of studies by Rovainen and his student James Buchanan, the cells that formed the neural circuits within the spinal cord capable of generating the rhythmic motor patterns that underlie swimming were examined. Note that there are still missing details in the network scheme despite claims by Grillner that the network is characterised (Parker 2006, 2010). Spinal cord circuits are controlled by specific locomotor areas in the brainstem and midbrain, and these areas are in turn controlled by higher brain structures, including the basal ganglia and tectum.
In a study of the lamprey tectum published in 2007, they found electrical stimulation could elicit eye movements, lateral bending movements, or swimming activity, and the type, amplitude, and direction of movement varied as a function of the location within the tectum that was stimulated. These findings were interpreted as consistent with the idea that the tectum generates goal-directed locomotion in the lamprey.
Lampreys are used as a model organism in biomedical research, where their large reticulospinal are used to investigate synapse. The axons of lamprey are particularly large and allow for microinjection of substances for experimental manipulation.
They are also capable of full functional recovery after complete spinal cord transection. Another trait is the ability to delete several genes from their somatic cell lineages, about 20% of their DNA, which are vital during development of the embryo, but which in humans can cause problems such as cancer later in life, after they have served their purpose. How the genes destined for deletion are targeted is not yet known.
A lamprey pie was made for the coronation of Elizabeth II in 1953. Sixty years later, the city of Gloucester had to use fish from North America for her Diamond Jubilee, because few lampreys could be found in the River Severn.
In southwestern Europe (Portugal, Spain, and France), Finland and in Latvia (where lamprey is routinely sold in supermarkets), lampreys are a highly prized delicacy. In Finland (county of Nakkila), and Latvia (Carnikava Municipality), the river lamprey is the local symbol, found on their coats of arms. In 2015 the lamprey from Carnikava was included in the Protected designation of origin list by the European Commission.
Sea lamprey is the most sought-after species in Portugal and one of only two that can legally bear the commercial name "lamprey" ( lampreia): the other one being Lampetra fluviatilis, the European river lamprey, both according to Portaria (Government regulation no. 587/2006, from 22 June). "Arroz de lampreia" (lamprey rice) and "Lampreia à Bordalesa" (Bordeaux style lamprey) are some of the most important dishes in Portuguese cuisine.
Lampreys are also consumed in Sweden, Russia, Lithuania, Estonia, Japan, and South Korea. In Finland, they are commonly eaten grilled or smoked, but also pickled, or in vinegar.
The mucus and serum of several lamprey species, including the Caspian lamprey ( Caspiomyzon wagneri), river lampreys ( Lampetra fluviatilis and L. planeri), and sea lamprey ( Petromyzon marinus), are known to be toxic, and require thorough cleaning before cooking and consumption. (citing
In Britain, lampreys are commonly used as bait, normally as dead bait. Northern pike, European perch, and European chub all can be caught on lampreys. Frozen lampreys can be bought from most bait and Fishing tackle shops.
Indigenous American tribes of the Pacific Northwest have traditionally fished the Pacific lamprey ( Entosphenus tridentatus).
They are considered an invasive species, have no natural predators in the lakes, and prey on many species of commercial value, such as lake trout.
Lampreys are now found mostly in the streams that feed the lakes, and controlled with special barriers to prevent the upstream movement of adults, or by the application of toxicants called , which are harmless to most other aquatic species; however, these programs are complicated and expensive, and do not eradicate the lampreys from the lakes, but merely keep them in check.
New programs are being developed, including the use of chemically Infertility male lampreys in a method akin to the sterile insect technique. Finally, pheromones critical to lamprey migratory behaviour have been isolated, their chemical structures determined, and their impact on lamprey behaviour studied, in the laboratory and in the wild, and active efforts are underway to chemically source and to address regulatory considerations that might allow this strategy to proceed.Peter W. Sorensen, 2015, "Applications of pheromones in invasive fish control and fishery conservation (Ch. 12)," in Fish Pheromones and Related Cues (P.W. Sorensen & B.D. Wisenden, Eds.), pp. 255–268, , Hoboken, NJ, USA:Wiley-Blackwell, see [2] and [3], accessed 1 July 2015.Mary L. Moser, Pedro R. Almeida, Paul S. Kemp & P.W. Sorensen, 2014, "Lamprey spawning migration (Ch. 5, §5.6.1, Pheromones)," in Lampreys: Biology, Conservation and Control, Vol. 1 (Margaret F. Docker, Ed., Vol. 37, Fish & Fisheries Series), Berlin, BE, DEU:Springer, , see [4], accessed 1 July 2015.
Control of sea lampreys in the Great Lakes is conducted by the U.S. Fish and Wildlife Service and the Canadian Department of Fisheries and Oceans, and is coordinated by the Great Lakes Fishery Commission. Lake Champlain, bordered by New York, Vermont, and Quebec, and New York's Finger Lakes are also home to high populations of sea lampreys that warrant control. Lake Champlain's lamprey control program is managed by the New York State Department of Environmental Conservation, the Vermont Department of Fish and Wildlife, and the U.S. Fish and Wildlife Service. New York's Finger Lakes sea lamprey control program is managed solely by the New York State Department of Environmental Conservation.
In Japanese, lamprey are called yatsume-unagi (八つ目鰻, "eight-eyed eels"), thus excluding the nostril from the count.
This incident was incorporated into the plot of the 2003 novel Pompeii by Robert Harris in the incident of Ampliatus feeding a slave to his lampreys.
Lucius Licinius Crassus was mocked by Gnaeus Domitius Ahenobarbus (cos. 54 BC) for weeping over the death of his pet lamprey:
This story is also found in Aelian (Various Histories VII, 4) and Macrobius (Saturnalia III.15.3). It is included by Hugo von Hofmannsthal in the Chandos Letter:
In George R. R. Martin's novel series, A Song of Ice and Fire, Lord Wyman Manderly is mockingly called "Lord Lamprey" by his enemies in reference to his rumored affinity to lamprey pie and his striking obesity.
Kurt Vonnegut, in his late short story "The Big Space Fuck", posits a future America so heavily polluted – "Everything had turned to shit and beer cans", in his words – that the Great Lakes have been infested with a species of massive, man-eating ambulatory lampreys.
|
|