Isotopes are distinct nuclear species (or ) of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus) and position in the periodic table (and hence belong to the same chemical element), but different nucleon numbers () due to different numbers of in their nuclei. While all isotopes of a given element have virtually the same chemical properties, they have different and physical properties.
The term isotope comes from the Greek roots isos ( "equal") and topos ( "place"), meaning "the same place": different isotopes of an element occupy the same place on the periodic table. It was coined by Scottish doctor and writer Margaret Todd in a 1913 suggestion to the British chemist Frederick Soddy, who popularized the term.
The number of protons within the atomic nucleus is called its atomic number and is equal to the number of in the neutral (non-ionized) atom. Each atomic number identifies a specific element, but not the isotope; an atom of a given element may have a wide range in its number of . The number of (both protons and neutrons) in the nucleus is the atom's mass number, and each isotope of a given element has a different mass number.
For example, carbon-12, carbon-13, and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13, and 14, respectively. The atomic number of carbon is 6, which means that every carbon atom has 6 protons so that the neutron numbers of these isotopes are 6, 7, and 8 respectively.
The common pronunciation of the AZE notation is different from how it is written: is commonly pronounced helium-four instead of four-two-helium, and uranium two-thirty-five (American English) or uranium-two-three-five (British) instead of 235-92-uranium or 235-uranium. This is not an error but the original spoken usage for isotope names, originating before AZE notation became established.
Primordial nuclides include 35 nuclides with very long Half-life (over 100 million years) and 251 that are considered "stable nuclide nuclides", as they have not been observed to decay. In most cases, if an element has stable isotopes, those isotopes predominate in the elemental abundance found on Earth and in the Solar System. However, in the cases of three elements (tellurium, indium, and rhenium) the most abundant isotope found in nature is actually one (or two) extremely long-lived radioisotope(s) of the element, despite these elements having one or more stable isotopes.
Theory predicts that many apparently "stable" nuclides are radioactive, with extremely long half-lives (discounting the possibility of proton decay, which would make all nuclides ultimately unstable). Some stable nuclides are in theory energetically susceptible to other known forms of decay, such as alpha decay or double beta decay, but no decay products have yet been observed, and so these isotopes are said to be "observationally stable". The predicted half-lives for these nuclides often greatly exceed the estimated age of the universe, and in fact, there are also 31 known radionuclides (see primordial nuclide) with half-lives longer than the age of the universe.
The total of all known nuclides, of which most have been created only artificially, is several thousand, of which 987 are stable of have a half-life longer than one hour; see List of nuclides.
Several attempts to separate these new radioelements chemically had failed. For example, Soddy had shown in 1910 that mesothorium (later shown to be 228Ra), radium (226Ra, the longest-lived isotope), and thorium X (224Ra) are impossible to separate. Attempts to place the radioelements in the periodic table led Soddy and Kazimierz Fajans independently to propose their radioactive displacement law in 1913, to the effect that alpha decay produced an element two places to the left in the periodic table, whereas beta decay emission produced an element one place to the right.Kasimir Fajans (1913) "Über eine Beziehung zwischen der Art einer radioaktiven Umwandlung und dem elektrochemischen Verhalten der betreffenden Radioelemente" (On a relation between the type of radioactive transformation and the electrochemical behavior of the relevant radioactive elements), Physikalische Zeitschrift, 14: 131–136.Soddy announced his "displacement law" in: .Soddy elaborated his displacement law in: Alexander Smith Russell (1888–1972) also published a displacement law: Russell, Alexander S. (1913) "The periodic system and the radio-elements," Chemical News and Journal of Industrial Science, 107: 49–52. Soddy recognized that emission of an alpha particle followed by two beta particles led to the formation of an element chemically identical to the initial element but with a mass four units lighter and with different radioactive properties.
Soddy proposed that several types of atoms (differing in radioactive properties) could occupy the same place in the table. For example, the alpha-decay of uranium-235 forms thorium-231, whereas the beta decay of actinium-230 forms thorium-230. The term "isotope", Greek for "at the same place", was suggested to Soddy by Margaret Todd, a Scottish physician and family friend, during a conversation in which he explained his ideas to her.Soddy first used the word "isotope" in: Scerri, Eric R. (2007) The Periodic Table, Oxford University Press, , Ch. 6, note 44 (p. 312) citing Alexander Fleck, described as a former student of Soddy's.In his 1893 book, William T. Preyer also used the word "isotope" to denote similarities among elements. From p. 9 of William T. Preyer, Das genetische System der chemischen Elemente The (Berlin, Germany: R. Friedländer & Sohn, 1893): "Die ersteren habe ich der Kürze wegen isotope Elemente genannt, weil sie in jedem der sieben Stämmme der gleichen Ort, nämlich dieselbe Stuffe, einnehmen." (For the sake of brevity, I have named the former "isotopic" elements, because they occupy the same place in each of the seven families i.e.,, namely the same step i.e.,.) He received the 1921 Nobel Prize in Chemistry in part for his work on isotopes.
In 1914 T. W. Richards found variations between the atomic weight of lead from different mineral sources, attributable to radiogenic variations in isotopic composition; The origins of the conceptions of isotopes Frederick Soddy, Nobel prize lecture the natural decay chain ending with three different isotopes of lead.
F. W. Aston subsequently discovered multiple stable isotopes for numerous elements using a mass spectrograph, related to Thomson's method. In 1919 Aston studied neon with sufficient resolution to show that the two isotopic masses are very close to the integers 20 and 22, and that neither is equal to the known molar mass (20.2) of neon gas. This is an example of Aston's whole number rule for isotopic masses, now known to be exceptionless, which states that large deviations of elemental molar masses from integers are due to the fact that the element is a mixture of isotopes. Aston similarly showed in 1920 that the molar mass of chlorine (35.45) is a weighted average of the almost integral masses for the two isotopes 35Cl and 37Cl. Mass spectra and isotopes Francis W. Aston, Nobel prize lecture 1922
The main exception to this is the kinetic isotope effect: due to their larger masses, heavier isotopes tend to react somewhat more slowly than lighter isotopes of the same element. This is most pronounced by far for protium (), deuterium (), and tritium (), because deuterium has twice the mass of protium and tritium has three times the mass of protium. These mass differences also affect the behavior of their respective chemical bonds, by changing the center of gravity (reduced mass) of the atomic systems. However, for heavier elements, the relative mass difference between isotopes is much less so that the mass-difference effects on chemistry are usually negligible. (Heavy elements also have relatively more neutrons than lighter elements, so the ratio of the nuclear mass to the collective electronic mass is slightly greater.) There is also an equilibrium isotope effect.
Similarly, two molecules that differ only in the isotopes of their atoms () have identical electronic structures, and therefore almost indistinguishable physical and chemical properties (again with deuterium and tritium being the primary exceptions). The vibrational modes of a molecule are determined by its shape and by the masses of its constituent atoms; so different isotopologues have different sets of vibrational modes. Because vibrational modes allow a molecule to absorb of corresponding energies, isotopologues have different optical properties in the infrared range.
+ Even/odd Z, N ( as OE) ! p, n !! EE !! OO !! EO !! OE !! Total |
251 |
35 |
286 |
Most stable nuclides are even-proton-even-neutron, where all numbers Z, N, and A are even. The odd- A stable nuclides are divided (roughly evenly) into odd-proton-even-neutron, and even-proton-odd-neutron nuclides. Stable odd-proton-odd-neutron nuclides are the least common.
+ Even-odd long-lived ! !! Decay mode !! Half-life | |
beta decay | 7.7 annum |
alpha decay | 1.06 annum |
alpha decay | 7.04 annum |
Only five stable nuclides contain both an odd number of protons and an odd number of neutrons. The first four "odd-odd" nuclides occur in low mass nuclides, for which changing a proton to a neutron or vice versa would lead to a very lopsided proton-neutron ratio (, , , and ; spins 1, 1, 3, 1). The only other entirely "stable" odd-odd nuclide, (spin 9), is thought to be the rarest of the 251 stable nuclides, and is the only primordial nuclear isomer, which has not yet been observed to decay despite experimental attempts.
Many odd-odd radionuclides (such as the ground state of tantalum-180) with comparatively short half-lives are known. Usually, they beta-decay to their nearby even-even isobars that have paired protons and paired neutrons. Of the nine primordial odd-odd nuclides (five stable and four radioactive with long half-lives), only is the most common isotope of a common element. This is the case because it is a part of the CNO cycle. The nuclides and are minority isotopes of elements that are themselves rare compared to other light elements, whereas the other six isotopes make up only a tiny percentage of the natural abundance of their elements.
48 stable odd-proton-even-neutron nuclides, stabilized by their paired neutrons, form most of the stable isotopes of the odd-numbered elements; the very few odd-proton-odd-neutron nuclides comprise the others. There are 41 odd-numbered elements with Z = 1 through 81, of which 39 have stable isotopes (technetium () and promethium () have no stable isotopes). Of these 39 odd Z elements, 30 elements (including hydrogen-1 where 0 neutrons is even) have one stable odd-even isotope, and nine elements: chlorine (), potassium (), copper (), gallium (), bromine (), silver (), antimony (), iridium (), and thallium (), have two odd-even stable isotopes each. This makes a total stable odd-even isotopes.
There are also five primordial long-lived radioactive odd-even isotopes, , , , , and . The last two were only recently found to decay, with half-lives greater than 10 years.
+ Neutron number parity ( as even) ! N !! Even !! Odd |
58 |
7 |
65 |
with odd neutron number are generally fissile (with ), whereas those with even neutron number are generally not, though they are fissionable with . All observationally stable odd-odd nuclides have nonzero integer spin. This is because the single unpaired neutron and unpaired proton have a larger nuclear force attraction to each other if their spins are aligned (producing a total spin of at least 1 unit), instead of anti-aligned. See deuterium for the simplest case of this nuclear behavior.
Only , , and have odd neutron number and are the most naturally abundant isotope of their element.
As discussed above, only 80 elements have any stable isotopes, and 26 of these have only one stable isotope. Thus, about two-thirds of stable elements occur naturally on Earth in multiple stable isotopes, with the largest number of stable isotopes for an element being ten, for tin (). There are about 94 elements found naturally on Earth (up to plutonium inclusive), though some are detected only in very tiny amounts, such as plutonium-244. Scientists estimate that the elements that occur naturally on Earth (some only as radioisotopes) occur as 339 isotopes () in total. Only 251 of these naturally occurring nuclides are stable, in the sense of never having been observed to decay as of the present time. An additional 35 primordial nuclides (to a total of 286 primordial nuclides), are radioactive with known half-lives, but have half-lives longer than 100 million years, allowing them to exist from the beginning of the Solar System. See list of nuclides for details.
All the known occur naturally on Earth; the other naturally occurring nuclides are radioactive but occur on Earth due to their relatively long half-lives, or else due to other means of ongoing natural production. These include the afore-mentioned cosmogenic nuclides, the nucleogenic nuclides, and any radiogenic nuclides formed by ongoing decay of a primordial radioactive nuclide, such as radon and radium from uranium.
An additional ~3000 radioactive nuclides not found in nature have been created in nuclear reactors and in particle accelerators. Many short-lived nuclides not found naturally on Earth have also been observed by spectroscopic analysis, being naturally created in stars or . An example is aluminium-26, which is not naturally found on Earth but is found in abundance on an astronomical scale.
The tabulated atomic masses of elements are averages that account for the presence of multiple isotopes with different masses. Before the discovery of isotopes, empirically determined noninteger values of relative atomic mass confounded scientists. For example, a sample of chlorine contains 75.8% chlorine-35 and 24.2% chlorine-37, giving an average atomic mass of 35.5 daltons.
According to generally accepted cosmology theory, only isotopes of hydrogen and helium, traces of some isotopes of lithium and beryllium, and perhaps some boron, were created at the Big Bang, while all other nuclides were synthesized later, in stars and supernovae, and in interactions between energetic particles such as cosmic rays, and previously produced nuclides. (See nucleosynthesis for details of the various processes thought responsible for isotope production.) The respective abundances of isotopes on Earth result from the quantities formed by these processes, their spread through the galaxy, and the rates of decay for isotopes that are unstable. After the initial coalescence of the Solar System, isotopes were redistributed according to mass, and the isotopic composition of elements varies slightly from planet to planet. This sometimes makes it possible to trace the origin of .
The mass number is a dimensionless quantity. The atomic mass, on the other hand, is measured using the dalton (symbol Da), which is defined in terms of the mass of the carbon-12 atom. It is also called the unified atomic mass unit (symbol u).
The atomic masses of naturally occurring isotopes of an element determine the standard atomic weight of the element. When the element contains N isotopes, the expression below is applied for the average atomic mass :
|
|