In geometry, an isosceles triangle () is a triangle that has two sides of equal length and two of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of and certain .
The mathematical study of isosceles triangles dates back to ancient Egyptian mathematics and Babylonian mathematics. Isosceles triangles have been used as decoration from even earlier times, and appear frequently in architecture and design, for instance in the and of buildings.
The two equal sides are called the legs and the third side is called the base of the triangle. The other dimensions of the triangle, such as its height, area, and perimeter, can be calculated by simple formulas from the lengths of the legs and base. Every isosceles triangle has reflection symmetry across the perpendicular bisector of its base, which passes through the opposite vertex and divides the triangle into a pair of congruent . The two equal angles at the base (opposite the legs) are always acute angle, so the classification of the triangle as acute, right, or obtuse triangle depends only on the angle between its two legs.
In an isosceles triangle that has exactly two equal sides, the equal sides are called Catheti and the third side is called the base. The angle included by the legs is called the vertex angle and the angles that have the base as one of their sides are called the base angles. The vertex opposite the base is called the apex. In the equilateral triangle case, since all sides are equal, any side can be called the base.
Whether an isosceles triangle is acute, right or obtuse depends only on the angle at its apex. In Euclidean geometry, the base angles can not be obtuse (greater than 90°) or right (equal to 90°) because their measures would sum to at least 180°, the total of all angles in any Euclidean triangle. Since a triangle is obtuse or right if and only if one of its angles is obtuse or right, respectively, an isosceles triangle is obtuse, right or acute if and only if its apex angle is respectively obtuse, right or acute. In Edwin Abbott's book Flatland, this classification of shapes was used as a satire of social hierarchy: isosceles triangles represented the working class, with acute isosceles triangles higher in the hierarchy than right or obtuse isosceles triangles.
As well as the isosceles right triangle, several other specific shapes of isosceles triangles have been studied. These include the Calabi triangle (a triangle with three congruent inscribed squares), the golden triangle and golden gnomon (two isosceles triangles whose sides and base are in the golden ratio), the 80-80-20 triangle appearing in the Langley's Adventitious Angles puzzle, and the 30-30-120 triangle of the triakis triangular tiling. Five , the triakis tetrahedron, triakis octahedron, tetrakis hexahedron, pentakis dodecahedron, and triakis icosahedron, each have isosceles-triangle faces, as do infinitely many pyramids and .
The Euler line of any triangle goes through the triangle's orthocenter (the intersection of its three altitudes), its centroid (the intersection of its three medians), and its circumcenter (the intersection of the perpendicular bisectors of its three sides, which is also the center of the circumcircle that passes through the three vertices). In an isosceles triangle with exactly two equal sides, these three points are distinct, and (by symmetry) all lie on the symmetry axis of the triangle, from which it follows that the Euler line coincides with the axis of symmetry. The incenter of the triangle also lies on the Euler line, something that is not true for other triangles. If any two of an angle bisector, median, or altitude coincide in a given triangle, that triangle must be isosceles.
If the apex angle and leg lengths of an isosceles triangle are known, then the area of that triangle is:
The Steiner–Lehmus theorem states that every triangle with two angle bisectors of equal lengths is isosceles. It was formulated in 1840 by C. L. Lehmus. Its other namesake, Jakob Steiner, was one of the first to provide a solution. Although originally formulated only for internal angle bisectors, it works for many (but not all) cases when, instead, two external angle bisectors are equal. The 30-30-120 isosceles triangle makes a boundary case for this variation of the theorem, as it has four equal angle bisectors (two internal, two external).
The radius of the circumscribed circle is:
Generalizing the partition of an acute triangle, any cyclic polygon that contains the center of its circumscribed circle can be partitioned into isosceles triangles by the radii of this circle through its vertices. The fact that all radii of a circle have equal length implies that all of these triangles are isosceles. This partition can be used to derive a formula for the area of the polygon as a function of its side lengths, even for cyclic polygons that do not contain their circumcenters. This formula generalizes Heron's formula for triangles and Brahmagupta's formula for cyclic quadrilaterals.
Either diagonal of a rhombus divides it into two congruent isosceles triangles. Similarly, one of the two diagonals of a kite divides it into two isosceles triangles, which are not congruent except when the kite is a rhombus.
In the architecture of the Middle Ages, another isosceles triangle shape became popular: the Egyptian isosceles triangle. This is an isosceles triangle that is acute, but less so than the equilateral triangle; its height is proportional to 5/8 of its base. The Egyptian isosceles triangle was brought back into use in modern architecture by Dutch architect Hendrik Petrus Berlage.
Warren truss structures, such as bridges, are commonly arranged in isosceles triangles, although sometimes vertical beams are also included for additional strength. Surfaces tessellation by obtuse isosceles triangles can be used to form deployable structures that have two stable states: an unfolded state in which the surface expands to a cylindrical column, and a folded state in which it folds into a more compact prism shape that can be more easily transported. The same tessellation pattern forms the basis of Yoshimura buckling, a pattern formed when cylindrical surfaces are axially compressed, and of the Schwarz lantern, an example used in mathematics to show that the area of a smooth surface cannot always be accurately approximated by polyhedra converging to the surface.
In graphic design and the decorative arts, isosceles triangles have been a frequent design element in cultures around the world from at least the Early Neolithic to modern times. They are a common design element in and heraldry, appearing prominently with a vertical base, for instance, in the flag of Guyana, or with a horizontal base in the flag of Saint Lucia, where they form a stylized image of a mountain island.
They also have been used in designs with religious or mystic significance, for instance in the Sri Yantra of Tantra.
In celestial mechanics, the three-body problem has been studied in the special case that the three bodies form an isosceles triangle, because assuming that the bodies are arranged in this way reduces the number of degrees of freedom of the system without reducing it to the solved Lagrangian point case when the bodies form an equilateral triangle. The first instances of the three-body problem shown to have unbounded oscillations were in the isosceles three-body problem.
The theorem that the base angles of an isosceles triangle are equal appears as Proposition I.5 in Euclid. This result has been called the pons asinorum (the bridge of asses) or the isosceles triangle theorem. Rival explanations for this name include the theory that it is because the diagram used by Euclid in his demonstration of the result resembles a bridge, or because this is the first difficult result in Euclid, and acts to separate those who can understand Euclid's geometry from those who cannot.
A well-known fallacy is the false proof of the statement that all triangles are isosceles, first published by W. W. Rouse Ball in 1892, and later republished in Lewis Carroll's posthumous Lewis Carroll Picture Book.. See also . The fallacy is rooted in Euclid's lack of recognition of the concept of betweenness and the resulting ambiguity of inside versus outside of figures.
|
|