Product Code Database
Example Keywords: soulcalibur -dungeon $30-142
barcode-scavenger
   » » Wiki: Importin
Tag Wiki 'Importin'.
Tag

Importin is a type of that transports molecules from the 's to the . It does so by binding to specific recognition sequences, called nuclear localization sequences (NLS).

Importin has two subunits, importin α and importin β. Members of the importin-β family can bind and transport cargo by themselves, or can form with importin-α. As part of a , importin-β mediates interactions with the , while importin-α acts as an adaptor protein to bind the nuclear localization signal (NLS) on the cargo. The NLS-Importin α-Importin β dissociates after binding to Ran GTP inside the , with the two importin proteins being recycled to the for further use.


Discovery
Importin can exist as either a of importin-α/β or as a of Importin-β. Importin-α was first isolated in 1994 by a group including Https://www.gradschool.uni-luebeck.de/index.php?id=223" target="_blank" rel="nofollow"> Enno Hartmann, based at the Max Delbrück Center for Molecular Medicine. The process of nuclear protein import had already been characterised in previous reviews, but the key proteins involved had not been elucidated up until that point. A 60 kDa protein, essential for protein import into the nucleus, and with a 44% sequence identity to SRP1p, was purified from eggs. It was cloned, sequenced and expressed in and in order to completely reconstitute signal dependent transport, had to be combined with Ran(TC4). Other key stimulatory factors were also found in the study.

Importin-β, unlike importin-α, has no direct homologues in yeast, but was purified as a 90-95 kDa protein and found to form a with importin-α in a number of different cases. These included a study led by Michael Rexach and further studies by Dirk Görlich. These groups found that importin-α requires another protein, importin-β to function, and that together they form a receptor for nuclear localization signals (NLS), thus allowing transport into the . Since these initial discoveries in 1994 and 1995, a host of Importin genes, such as IPO4 and IPO7, have been found that facilitate the import of slightly different cargo proteins, due to their differing structure and locality.


Structure

Importin-α
A large proportion of the importin-α adaptor protein is made up of several arranged in . These repeats can stack together to form a curved-shaped structure, which facilitates binding to the NLS of specific cargo proteins. The major NLS binding site is found towards the , with a minor site being found at the . As well as the structures, Importin-α also contains a 90 region, responsible for binding to Importin-β, known as the Importin-β binding (IBB)domain. This is also a site of autoinhibition, and is implicated in the release of cargo once importin-α reaches the .


Importin-β
Importin-β is the typical structure of a larger superfamily of . The basis of their structure is 18-20 tandem repeats of the HEAT motif. Each one of these repeats contains two antiparallel linked by a turn, which stack together to form the overall structure of the .

In order to transport cargo into the , importin-β must associate with the . It does this by forming weak, transient with at their various (Phe-Gly) motifs. Crystallographic analysis has shown that these bind to importin-β at shallow pockets found on its surface.


Nuclear protein import cycle
The primary function of importin is to mediate the translocation of with nuclear localization signals into the , through , in a process known as the nuclear protein import cycle.


Cargo binding
The first step of this cycle is the binding of cargo. Importin can perform this function as a importin-β , but usually requires the presence of importin-α, which acts as an adaptor to cargo proteins (via interactions with the NLS). The NLS is a sequence of basic that tags the as cargo destined for the . A cargo can contain either one or two of these , which will bind to the major and/or minor binding sites on importin-α.


Cargo transport
Once the cargo protein is bound, importin-β interacts with the , and the complex diffuses into the from the . The rate of depends on both the concentration of importin-α present in the cytoplasm and also the binding affinity of importin-α to the cargo. Once inside the , the complex interacts with the , Ran-GTP. This leads to the dissociation of the complex by altering the conformation of importin-β. Importin-β is left bound to Ran-GTP, ready to be recycled.


Cargo release
Now that the importin-α/cargo complex is free of importin-β, the cargo protein can be released into the . The importin-β-binding (IBB) domain of importin-α contains an auto-regulatory region that mimics the NLS motif. The release of importin-β frees this region and allows it to loop back and compete for binding with the cargo protein at the major NLS-binding site. This competition leads to the release of the . In some cases, specific release factors such as Nup2 and Nup50 can be employed to help release the cargo as well.


Recycling
Finally, in order to return to the , importin-α must associate with a Ran-GTP/CAS (nuclear export factor) complex which facilitates its exit from the . CAS (cellular apoptosis susceptibility protein) is part of the importin-β superfamily of and is defined as a nuclear export factor. Importin-β returns to the , still bound to Ran-GTP. Once in the , Ran-GTP is by RanGAP, forming Ran-GDP, and releasing the two importins for further activity. It is this hydrolysis of GTP that provides the energy for the cycle as a whole. In the , a GEF will charge Ran with a GTP molecule, which is then hydrolysed by a GAP in the , as stated above. It is this activity of Ran that allows for the unidirectional transport of .


Disease
There are several disease states and pathologies that are associated with or changes in expression of importin-α and importin-β.

Importins are vital regulatory during the processes of and . As a result, a disruption in the expression patterns of importin-α has been shown to cause fertility defects in Drosophila melanogaster.

There have also been studies that link altered importin-α to some cases of . studies have implicated a truncated form of importin-α in which the NLS binding domain is missing.

In addition, importin-α has been shown to transport the tumour suppressor gene, BRCA1 (breast cancer type 1 susceptibility protein), into the . The overexpression of importin-α has also been linked with poor survival rates seen in certain patients.

Importin activity is also associated with some . For instance, in the infection pathway of the Ebola virus, a key step is the inhibition of the nuclear import of PY-STAT1. This is achieved by the virus sequestering importin-α in the , meaning it can no longer bind its cargo at the NLS.

As a result, importin cannot function and the cargo protein stays in the cytoplasm.


Types of cargo
Many different cargo can be transported into the by importin. Often, different proteins will require different combinations of α and β in order to translocate. Some examples of different cargo are listed below.
Importin-β and importin-α
Importin-β and importin-α
Importin-β and NPI-1 (type of importin-α)
Importin-α not required
Importin-α not required


Human importin genes
Although importin-α and importin-β are used to describe importin as a whole, they actually represent larger of that share a similar structure and function. Various different genes have been identified for both α and β, with some of them listed below. Note that often and importin are used interchangeably.
  • Importin: IPO4, IPO5, IPO7, IPO8, IPO9, IPO11, IPO13
  • Karyopherin-α: KPNA1, KPNA2, KPNA3, KPNA4, KPNA5, KPNA6
  • Karyopherin-β: KPNB1


See also
  • Nuclear localization sequence
  • Nuclear pore complex
  • Nuclear transport
  • Ran (gene)


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time