Hydroxyapatite (IMA name: hydroxylapatite) (Hap, HAp, or HA) is a naturally occurring mineral form of calcium apatite with the Chemical formula , often written to denote that the crystal unit cell comprises two entities. It is the Hydroxy group endmember of the complex apatite. The ion can be replaced by fluorine or chlorine, producing fluorapatite or chlorapatite. It crystallizes in the hexagonal crystal system. Pure hydroxyapatite powder is white. Naturally occurring apatites can, however, also have brown, yellow, or green colorations, comparable to the discolorations of dental fluorosis.
Up to 50% by volume and 70% by weight of human bone is a modified form of hydroxyapatite, known as bone mineral. Carbonated calcium-deficient hydroxyapatite is the main mineral of which dental enamel and dentin are composed. Hydroxyapatite crystals are also found in pathological calcifications such as those found in Breast cancer, as well as calcifications within the pineal gland (and other structures of the brain) known as corpora arenacea or "brain sand".
The ability to synthetically replicate hydroxyapatite has invaluable clinical implications, especially in dentistry. Each technique yields hydroxyapatite crystals of varied characteristics, such as size and shape. These variations have a marked effect on the biological and mechanical properties of the compound, and therefore these hydroxyapatite products have different clinical uses.
Sintering these non-stoichiometric phases forms a solid phase which is an intimate mixture of tricalcium phosphate and hydroxyapatite, termed biphasic calcium phosphate:
Hydroxyapatite deposits in tendons around joints results in the medical condition calcific tendinitis.
Hydroxyapatite is a constituent of calcium phosphate kidney stones.
When fluoride ions are present during the remineralisation process, either through water fluoridation or the use of fluoride-containing toothpaste, the stronger and more acid-resistant fluorapatite crystals form instead of hydroxyapatite crystals.
In comparison to alternative treatments for dentine hypersensitivity relief, nano-hydroxyapatite containing treatment has been shown to perform better clinically. Nano-hydroxyapatite was proven to be better than other treatments at reducing sensitivity against evaporative stimuli, such as an air blast, and tactile stimuli, such as tapping the tooth with a dental instrument. However, no difference was seen between nano-hydroxyapatite and other treatments for cold stimuli. Hydroxylapatite has shown significant medium and long-term desensitizing effects on dentine hypersensitivity using evaporative stimuli and the visual analogue scale (alongside potassium nitrate, arginine, glutaraldehyde with hydroxyethyl methacrylate, hydroxyapatite, adhesive systems, glass ionomer cements and laser).
In some toothpaste hydroxyapatite can be found in the form of nanocrystals (as these are easily dissolved). In recent years, hydroxyapatite nanocrystals (nHA) have been used in toothpaste to combat dental hypersensitivity. They aid in the repair and remineralisation of the Tooth enamel, thus helping to prevent tooth sensitivity. Tooth enamel can become demineralised due to various factors, including acidic erosion and dental Tooth decay. If left untreated this can lead to the exposure of dentin and subsequent exposure of the dental pulp. In various studies the use of nano hydroxyapatite in toothpaste showed positive results in aiding the remineralisation of dental enamel. In addition to remineralisation, in vitro studies have shown that toothpastes containing nano-hydroxyapatite have the potential to reduce biofilm formation on both tooth enamel and resin-based composite surfaces.
In the future, there are possibilities for using nano-hydroxyapatite for tissue engineering and repair. The main and most advantageous feature of nano-hydroxyapatite is its biocompatibility. It is chemically similar to naturally occurring hydroxyapatite and can mimic the structure and biological function of the structures found in the resident extracellular matrix. Therefore, it can be used as a scaffold for engineering tissues such as bone and cementum. It may be used to restore cleft lips and palates and refine existing practices such as preservation of alveolar bone after extraction for better implant placement.
The European Commission's Scientific Committee on Consumer Safety (SCCS) reissued an updated opinion in 2023, where it cleared rod-shaped nano hydroxyapatite of concerns regarding genotoxicity, allowing consumer products to contain concentrations of nano hydroxyapatite as high as 10% for toothpastes and 0.465% for mouthwashes. However, it warns of needle-shaped nano hydroxyapatite and of inhalation in spray products. It stated:European Commission Scientific Committee on Consumer Safety, Opinion on Hydroxyapatite (nano), SCCS/1648/22 – 21–22 March 2023
In July 2025, the Scientific Committee on Consumer Safety (SCCS) adopted its fourth opinion (Submission IV), concluding that nano‑hydroxyapatite is safe at concentrations up to 29.5 % in toothpaste and up to 10 % in mouthwash, under defined particle morphology constraints.
The combined presence of calcium ions (C- sites) and phosphate sites (P-sites) provide metal affinity and ion exchange properties respectively. The C-sites on the surface of the resin undergo metal affinity interactions with phosphate or carboxyl groups present on the biomolecules. Concurrently, these positively charged C-sites tend to repel positively charged functional groups (e.g., amino groups) on biomolecules. P-sites undergo cationic exchange with positively charged functional groups on biomolecules. They exhibit electrostatic repulsion with negatively charged functional groups on biomolecules. For the elution of molecules buffer with high concentration of phosphate and sodium chloride is used. The nature of different charged ions on the surface of hydroxyapatite provides the framework for unique selectivity and binding of biomolecules, facilitating robust separation of biomolecules.
Hydroxyapatite is available in different forms and in different sizes for the purpose of protein purification. The advantages of hydroxyapatite media are its high product stability and uniformity in various lots during its production. Generally, hydroxyapatite was used in the polishing step of monoclonal antibodies, isolation of endotoxin free plasmids, purification of enzymes and viral particles.
Stable isotope analysis of human and faunal hydroxyapatite can be used to indicate whether a diet was predominantly terrestrial or marine in nature (carbon, strontium); the geographical origin and migratory habits of an animal or human (oxygen, strontium) and to reconstruct past temperatures and climate shifts (oxygen).
Post-depositional alteration of bone can contribute to the degradation of bone collagen, the protein required for stable isotope analysis.
|
|