In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by pressing or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common . Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are , concrete, certain , and superhard materials, which can be contrasted with soft matter.
Another tool used to make these tests is the pocket hardness tester. This tool consists of a scale arm with graduated markings attached to a four-wheeled carriage. A scratch tool with a sharp rim is mounted at a predetermined angle to the testing surface. In order to use it a weight of known mass is added to the scale arm at one of the graduated markings, the tool is then drawn across the test surface. The use of the weight and markings allows a known pressure to be applied without the need for complicated machinery. Hoffman Scratch Hardness Tester . byk.com
Strength is a measure of the extent of a material's elastic range, or elastic and plastic ranges together. This is quantified as compressive strength, shear strength, tensile strength depending on the direction of the forces involved. Ultimate strength is an engineering measure of the maximum load a part of a specific material and geometry can withstand.
Brittleness, in technical usage, is the tendency of a material to fracture with very little or no detectable plastic deformation beforehand. Thus in technical terms, a material can be both brittle and strong. In everyday usage "brittleness" usually refers to the tendency to fracture under a small amount of force, which exhibits both brittleness and a lack of strength (in the technical sense). For perfectly brittle materials, yield strength and ultimate strength are the same, because they do not experience detectable plastic deformation. The opposite of brittleness is ductility.
The toughness of a material is the maximum amount of energy it can absorb before fracturing, which is different from the amount of force that can be applied. Toughness tends to be small for brittle materials, because elastic and plastic deformations allow materials to absorb large amounts of energy.
Hardness increases with decreasing particle size. This is known as the Hall-Petch relationship. However, below a critical grain-size, hardness decreases with decreasing grain size. This is known as the inverse Hall-Petch effect.
Hardness of a material to deformation is dependent on its microdurability or small-scale shear modulus in any direction, not to any Stiffness or stiffness properties such as its bulk modulus or Young's modulus. Stiffness is often confused for hardness. Some materials are stiffer than diamond (e.g. osmium) but are not harder, and are prone to and flaking in squamose or acicular habits.
There are two types of irregularities at the grain level of the microstructure that are responsible for the hardness of the material. These irregularities are point defects and line defects. A point defect is an irregularity located at a single lattice site inside of the overall three-dimensional lattice of the grain. There are three main point defects. If there is an atom missing from the array, a vacancy defect is formed. If there is a different type of atom at the lattice site that should normally be occupied by a metal atom, a substitutional defect is formed. If there exists an atom in a site where there should normally not be, an interstitial defect is formed. This is possible because space exists between atoms in a crystal lattice. While point defects are irregularities at a single site in the crystal lattice, line defects are irregularities on a plane of atoms. Dislocations are a type of line defect involving the misalignment of these planes. In the case of an edge dislocation, a half plane of atoms is wedged between two planes of atoms. In the case of a screw dislocation two planes of atoms are offset with a helical array running between them.Samuel, J. (2009). Introduction to materials science course manual. Madison, Wisconsin: University of Wisconsin-Madison.
In glasses, hardness seems to depend linearly on the number of topological constraints acting between the atoms of the network. Hence, the rigidity theory has allowed predicting hardness values with respect to composition.
Dislocations provide a mechanism for planes of atoms to slip and thus a method for plastic or permanent deformation. Planes of atoms can flip from one side of the dislocation to the other effectively allowing the dislocation to traverse through the material and the material to deform permanently. The movement allowed by these dislocations causes a decrease in the material's hardness.
The way to inhibit the movement of planes of atoms, and thus make them harder, involves the interaction of dislocations with each other and interstitial atoms. When a dislocation intersects with a second dislocation, it can no longer traverse through the crystal lattice. The intersection of dislocations creates an anchor point and does not allow the planes of atoms to continue to slip over one anotherLeslie, W. C. (1981). The physical metallurgy of steels. Washington: Hemisphere Pub. Corp., New York: McGraw-Hill, . A dislocation can also be anchored by the interaction with interstitial atoms. If a dislocation comes in contact with two or more interstitial atoms, the slip of the planes will again be disrupted. The interstitial atoms create anchor points, or pinning points, in the same manner as intersecting dislocations.
By varying the presence of interstitial atoms and the density of dislocations, a particular metal's hardness can be controlled. Although seemingly counter-intuitive, as the density of dislocations increases, there are more intersections created and consequently more anchor points. Similarly, as more interstitial atoms are added, more pinning points that impede the movements of dislocations are formed. As a result, the more anchor points added, the harder the material will become.
However, while a hardness number thus depends on the stress-strain relationship, inferring the latter from the former is far from simple and is not attempted in any rigorous way during conventional hardness testing. (In fact, the Indentation Plastometry technique, which involves iterative FEM modelling of an indentation test, does allow a stress-strain curve to be obtained via indentation, but this is outside the scope of conventional hardness testing.) A hardness number is just a semi-quantitative indicator of the resistance to plastic deformation. Although hardness is defined in a similar way for most types of test – usually as the load divided by the contact area – the numbers obtained for a particular material are different for different types of test, and even for the same test with different applied loads. Attempts are sometimes made to identify simple analytical expressions that allow features of the stress-strain curve, particularly the Yield Stress and Ultimate Tensile Stress (UTS), to be obtained from a particular type of hardness number. However, these are all based on empirical correlations, often specific to particular types of alloy: even with such a limitation, the values obtained are often quite unreliable. The underlying problem is that metals with a range of combinations of yield stress and work hardening characteristics can exhibit the same hardness number. The use of hardness numbers for any quantitative purpose should, at best, be approached with considerable caution.
|
|