In chemistry, halogenation is a chemical reaction which introduces one or more into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens (). Halides are also commonly introduced using halide salts and hydrogen halide acids. Many specialized exist for introducing halogens into diverse substrates, e.g. thionyl chloride.
Organic chemistry
Several pathways exist for the halogenation of organic compounds, including free radical halogenation, ketone halogenation, electrophilic halogenation, and halogen addition reaction. The nature of the substrate determines the pathway. The facility of halogenation is influenced by the halogen.
Fluorine and
chlorine are more
electrophilic and are more aggressive halogenating agents.
Bromine is a weaker halogenating agent than both fluorine and chlorine, while
iodine is the least reactive of them all. The facility of dehydrohalogenation follows the reverse trend: iodine is most easily removed from organic compounds, and
organofluorine compounds are highly stable.
Free radical halogenation
Halogenation of saturated hydrocarbons is a substitution reaction. The reaction typically involves
free radical pathways. The
regiochemistry of the halogenation of
alkanes is largely determined by the relative weakness of the C–H bonds. This trend is reflected by the faster reaction at tertiary and secondary positions.
Free radical chlorination is used for the industrial production of some solvents:
Naturally-occurring organobromine compounds are usually produced by free radical pathway catalyzed by the enzyme bromoperoxidase. The reaction requires bromide in combination with oxygen as an oxidant. The oceans are estimated to release 1–2 million tons of bromoform and 56,000 tons of bromomethane annually.
The iodoform reaction, which involves degradation of , proceeds by the free radical iodination.
Fluorination
Because of its extreme reactivity, fluorine () represents a special category with respect to halogenation. Most organic compounds, saturated or otherwise, burn upon contact with , ultimately yielding carbon tetrafluoride. By contrast, the heavier halogens are far less reactive toward saturated hydrocarbons.
Highly specialised conditions and apparatus are required for fluorinations with elemental fluorine. Commonly, fluorination reagents are employed instead of . Such reagents include cobalt trifluoride, chlorine trifluoride, and iodine pentafluoride.
The method electrochemical fluorination is used commercially for the production of perfluorinated compounds. It generates small amounts of elemental fluorine in situ from hydrogen fluoride. The method avoids the hazards of handling fluorine gas. Many commercially important organic compounds are fluorinated using this technology.
Addition of halogens to alkenes and alkynes
Unsaturated compounds, especially
alkenes and
alkynes,
add halogens:
In
oxychlorination, the combination of hydrogen chloride and
oxygen serves as the equivalent of
chlorine, as illustrated by this route to 1,2-dichloroethane:
The addition of halogens to alkenes proceeds via intermediate . In special cases, such intermediates have been isolated.
Bromination is more selective than chlorination because the reaction is less exothermic. Illustrative of the bromination of an alkene is the route to the anesthetic halothane from trichloroethylene:[ Synthesis of Essential Drugs, Ruben Vardanyan, Victor Hruby; Elsevier 2005 ]
Iodination and bromination can be effected by the addition of iodine and bromine to alkenes. The reaction, which conveniently proceeds with the discharge of the color of , is the basis of the analytical method. The iodine number and bromine number are measures of the degree of unsaturation for and other organic compounds.
Halogenation of aromatic compounds
Aromatic compounds are subject to electrophilic halogenation:
This kind of reaction typically works well for
chlorine and
bromine. Often a
catalyst is used, such as
ferric chloride.
Many detailed procedures are available.
[Organic chemistry by Jonathan Clayden, Nick Grieves, Stuart Warren, Oxford University Press]
Because
fluorine is so reactive, other methods, such as the Balz–Schiemann reaction, are used to prepare fluorinated aromatic compounds.
Other halogenation methods
In the Hunsdiecker reaction,
carboxylic acids are converted to
organic halide, whose
carbon chain is shortened by one
carbon atom with respect to the carbon chain of the particular carboxylic acid. The carboxylic acid is first converted to its
silver salt, which is then oxidized with
halogen:
Many organometallic compounds react with halogens to give the organic halide:
Inorganic chemistry
All
Chemical element aside from
argon,
neon, and
helium form
fluorides by direct reaction with
fluorine.
Chlorine is slightly more selective, but still reacts with most
metals and heavier
nonmetals. Following the usual trend,
bromine is less reactive and
iodine least of all. Of the many reactions possible, illustrative is the formation of gold(III) chloride by the chlorination of
gold. The chlorination of metals is usually not very important industrially since the
chlorides are more easily made from the
oxides and hydrogen chloride. Where chlorination of inorganic compounds is practiced on a relatively large scale is for the production of phosphorus trichloride and disulfur dichloride.
See also