Forensic identification is the application of forensic science, or "forensics", and technology to identify specific objects from the trace evidence they leave, often at a crime scene or the scene of an accident. Forensic means "for the courts".
Friction ridge identification is also governed by four premises or statements of facts:
People can also be identified from traces of their DNA from blood, skin, hair, saliva, and semen by DNA fingerprinting, from their ear print, from their teeth or bite by forensic odontology, from a photograph or a video recording by facial recognition systems, from the video recording of their walk by gait analysis, from an audio recording by voice analysis, from their handwriting by handwriting analysis, from the content of their writings by their writing style (e.g. typical phrases, factual bias, and/or misspellings of words), or from other traces using other biometric techniques. Many methods that are used in forensic science evidence have been proven to be unreliable. A lot of trials have been reviewed and testimony involving mostly microscopic hair comparison, but also bite mark, shoe print, soil, fiber, and fingerprint comparisons have been overturned because forensic analysts have provided invalid testimony at the trial.
Since forensic identification has been first introduced to the courts in 1980, the first exoneration due to DNA evidence was in 1989 and there have been 336 additional exonerations since then. Those who specialize in forensic identification continue to make headway with new discoveries and technological advances to make convictions more accurate.
Body identification is a subfield of forensics concerned with identifying someone from their remains, usually from Fingerprint, dental analysis, or DNA analysis.
Considering the existence of databases in states and countries worldwide containing records of fingerprints from their residents, there is the possibility of searching and comparing fingerprints. This enables an accurate comparison for victim identification.
Considering that many people have visited a dentist and have dental records, there is the possibility of retrieving this data for comparison with post-mortem examination data. Such a method enables quick, cost-effective, and reliable identification.
The most commonly used ante-mortem data are dental X-rays, dental models, and dental records. However, these data rely on the existence of dental records registered by a dentist. Nevertheless, even if a person does not have such records, a photograph of their smile or an old dental prosthesis can be used for comparison.
DNA can be sourced from Organic matter such as semen, blood, saliva, feces, urine, teeth, bone, and hair that is left behind from an individual. There are different presumptive and confirmatory tests used for each type of biological material found at a scene. Presumptive tests are quick, sensitive and are relatively specific to bodily fluids that give the analyst an idea of what might be present. Confirmatory tests confirm what the biological sample is. In addition to looking for biological material at a crime scene, pieces of evidence can also be examined and analyzed for the presence of DNA. Evidence pieces that may have the presence of DNA could include clothing, bedding, weapons, masks, gloves, among many others. This is attributed to touch DNA, where only minute samples are left after an object has been touched. It is defined as "evidence with no visible staining that would likely contain DNA resulting from the transfer of epithelial cells from the skin to an object." A forensic scientist can attempt to obtain a DNA profile from the sample with as few as six cells.
The first step in the DNA process with a piece of evidence is DNA extraction. Extraction is a technique used to remove the DNA from the cell. The next step would be quantification which determines how much DNA is present. The third step is amplification in order to yield multiple copies of DNA. Next is separation, to separate the DNA out to use for identification. Finally, the analyst can now complete analysis and interpretation of the DNA sample and compare to known profiles.
An unknown sample found at a crime scene is called a questioned sample. A known sample can be taken either from a suspect or found in a database. The FBI's database used for DNA is CODIS, Combined DNA Index System. It has data at three levels: local, state, and national. The national level data is stored in NDIS, National DNA Index system. CODIS/NDIS allows analysts to compare their questioned DNA profile among those of arrestees, convicted offenders, and other unknown samples to try and produce investigative leads. If questioned and known samples are similar, statistics and interpretation will then be completed. The DNA profile will be compared to a population database and a random match probability will be determined. Random match probability is defined as the chance that an individual selected randomly from a population will have an identical DNA profile to the markers tested.
During Dna Typing, several markers are examined, termed loci. When more markers are examined, this could result in either a greater probability that two unrelated individuals will have different or adds to the confidence of connecting an individual to an unknown sample. One locus difference between a questioned and known sample is enough to exclude that suspect as the contributor.
The FBI has identified 13 core STR loci that are effective for human identification. STR is short tandem repeats which are short DNA regions in the genome and are 2–6 base pairs in length. STR is common in forensic analysis because they are easily amplified using polymerase chain reaction (PCR) and they have unique variation among individuals for human identification. PCR is the technique of copying DNA by making millions of copies. When all 13 core loci are tested on a DNA profile, the random match probability is more than one in a trillion.
Since DNA was first used in a criminal investigation in 1986, it has aided investigators to solve many cases. DNA profiling is one of the most important tools in forensics and continued research will increase its ability and accuracy to provide more techniques for the future.
Species identification: The importance of species identification is most prominent in animal populations that are Poaching, harvested, and traded, such as rhinoceroses, lions, and African elephants. In order to distinguish which species is which, mtDNA, or mitochondrial DNA, is the most used genetic marker because it is easier to DNA profiling from highly decomposed and processed tissue compared to nuclear DNA. Additionally, the mitochondrial DNA has multiple copies per cell, which is another reason it's frequently used. When nuclear DNA is used, certain segments of the strands are amplified in order to compare those to segments of mitochondrial DNA. This comparison is used to figure out related genes and species proximity since distant relatives of animals are closer in proximity in the gene tree. That being said, the comparison process demands precision because mistakes can easily be made due to genes evolving and Mutation in the evolution of species.
Determination of geographic origin: Determining the origin of a certain species aids research in population numbers and Data lineage. Phylogenetics studies are most often used to find the broad geographic area of which a species reside. For example, in California seahorses were being sold for traditional medicinal purposes and the phylogenetic data of those seahorses led researchers to find their origin and from which population they came from and what species they were. In addition to phylogenetic data, assignment tests are used to find the probability of a species belonging to or originating from a specific population and genetic markers of a specimen are utilized. These types of tests are most accurate when all potential population's data have been gathered. Statistical analyses are used in assignment tests based on an individual's or Amplified Fragment Length Polymorphisms (AFLPs). Using microsatellites in these studies is more favorable than AFLPs because the AFLPs required non-degraded tissue samples and higher errors have been reported when using AFLPs.
|
|