The exosphere (; ) is a thin, atmosphere-like volume surrounding a planet or natural satellite where are gravitationally bound to that body, but where the density is so low that the molecules are essentially collision-less. In the case of bodies with substantial atmospheres, such as Earth's atmosphere, the exosphere is the uppermost layer, where the atmosphere thins out and merges with outer space. It is located directly above the thermosphere. Very little is known about it due to a lack of research. Mercury, the Moon, Ceres, Europa, and Ganymede have surface boundary exospheres, which are exospheres without a denser atmosphere underneath. The Earth's exosphere is mostly hydrogen and helium, with some heavier atoms and molecules near the base.
Earth's exosphere produces Earth's geocorona.
The exobase can be defined in one of two ways:
If we define the exobase as the height at which upward-traveling molecules experience one collision on average, then at this position the mean free path of a molecule is equal to one pressure scale height. This is shown in the following. Consider a volume of air, with horizontal area and height equal to the mean free path , at pressure and temperature . For an ideal gas, the number of molecules contained in it is:
where is the Boltzmann constant. From the requirement that each molecule traveling upward undergoes on average one collision, the pressure is:
where is the mean molecular mass of the gas. Solving these two equations gives:
which is the equation for the pressure scale height. As the pressure scale height is almost equal to the density scale height of the primary constituent, and because the Knudsen number is the ratio of mean free path and typical density fluctuation scale, this means that the exobase lies in the region where .
The fluctuation in the height of the exobase is important because this provides atmospheric drag on satellites, eventually causing them to fall from orbit if no action is taken to maintain the orbit.
Meteoroids have been reported to commonly impact the surface of Mercury at speeds ranging up to 80 km/s, which are capable of causing vaporization of both the meteor and surface regolith upon contact. These expulsions can result in clouds of mixed materials due to the force of the impact, which are capable of transporting gaseous materials and compounds to Mercury's exosphere. During the impact, the former elements of the colliding bodies are mostly devolved into atoms rather than molecules that can then be reformed during a cooling, quenching process. Such materials have been observed as Na, NaOH, and O2. However, it is theorized that, though different forms of sodium have been released into the Mercury exosphere via meteor impact, it is a small driver for the concentration of both sodium and potassium atoms overall. Calcium is more likely to be a result of impacts, though its transport is thought to be completed through photolysis of its former oxides or hydroxides rather than atoms released during the moment of impact such as sodium, potassium, and iron (Fe).
Another possible method of the exosphere formation of Mercury is due to its unique magnetosphere and solar wind relationship. The magnetosphere of this celestial body is hypothesized to be an incomplete shield from the weathering of solar wind. If accurate, there are openings in the magnetosphere in which solar wind is able to surpass the magnetosphere, reach the body of Mercury, and Sputtering the components of the surface that become possible sources of material in the exosphere. The weathering is capable of eroding the elements, such as sodium, and transporting them to the atmosphere. However, this occurrence is not constant, and it is unable to account for all atoms or molecules of the exosphere.
|
|