Product Code Database
Example Keywords: gloves -modern $36-127
barcode-scavenger
   » » Wiki: Eurytherm
Tag Wiki 'Eurytherm'.
Tag

A eurytherm is an , often an , that can function at a wide range of ambient temperatures. To be considered a eurytherm, all stages of an organism's life cycle must be considered, including juvenile and stages. These wide ranges of tolerable temperatures are directly derived from the tolerance of a given eurythermal organism's .

(1996). 9780521496582, Cambridge University Press.
Extreme examples of eurytherms include Tardigrades ( ), the desert pupfish (), and green crabs ( ), however, nearly all , including , are considered eurytherms. Eurythermy can be an evolutionary advantage: adaptations to cold temperatures, called cold eurythermy, are seen as essential for the survival of species during . In addition, the ability to survive in a wide range of temperatures increases a species' ability to inhabit other areas, an advantage for natural selection.

Eurythermy is an aspect of thermoregulation in organisms. It is in contrast with the idea of organisms, which can only operate within a relatively narrow range of ambient temperatures.Hill R, Wyse G, Anderson A. Animal Physiology. 2004. Sinaur Associates, Inc. Through a wide variety of thermal coping mechanisms, eurythermic organisms can either provide or expel heat for themselves in order to survive in cold or hot, respectively, or otherwise prepare themselves for extreme temperatures. Certain species of eurytherm have been shown to have unique protein synthesis processes that differentiate them from relatively stenothermic, but otherwise similar, species.


Examples
  • Tardigrades, known for their ability to survive in nearly any environment, are extreme examples of eurytherms. Certain species of tardigrade, including Mi. tardigradum, are able to withstand and survive temperatures ranging from –273 °C (near ) to 150 °C in their state.
  • The desert pupfish, a rare bony fish that occupies places like the Colorado River Delta in , small ponds in , and drainage sites near the in , can function in waters ranging from 8º to 42 °C.
  • The green crab is a common species of crab with a range that extends from and Central in the north to and Victoria, Australia in the south, including more temperate regions like in between. The green crab has been shown to survive in waters at least as cold as 8 °C, and at least as warm as 35 °C.
  • Boreal (genus ) are the primary plants occupying the of and North America. Although they are conifers, they are deciduous, and therefore lose their needles in Autumn. Species like the black spruce, or tamarack ( ) occupy wide swaths of land ranging from in the south, well into the arctic circle in Northern , , and Siberia in the north. It has been shown that the black spruce can endure temperatures as cold as –85°, and at least as warm as 20 °C.
  • Killer whales ( ) are found at nearly every latitude on earth. They are able to withstand water temperatures ranging from 0° to 30-35 °C.
    (2026). 9780080919935, Elsevier/Academic Press.
    Killer whales are deemed a cosmopolitan species, along with the osprey ( ) and the house sparrow ( ).


Advantages over stenotherms
It is thought that adaptations to cold temperatures (cold-eurythermy) in animals, despite the high cost of , has allowed for mobility and agility. This cold eurythermy is also viewed as a near necessity for survival of the evolutionary crises, including ice ages, that occur with relative frequency over the evolutionary timescale. Due to its ability to provide the excess energy and aerobic scope required for , eurythermy is considered to be the "missing link" between and endothermy. The green crab's success demonstrates one example of eurythermic advantage. Although are typically considered to be detrimental to the environment in which they are introduced, and even considered to be a leading cause of animal , the ability of an animal to thrive in various environmental conditions is a form of evolutionary fitness, and therefore is typically a characteristic of successful species. A species' relative eurythermality is one of the main factors in its ability to survive in different conditions. One example of eurythermic advantage can be seen in the failure of many of the world's Most species of coral are considered to be stenothermic. The worldwide increase in oceanic temperatures has caused many coral reefs to begin bleaching and dying because the coral have begun to expel the algae that live in their tissues and provide them with their food and color. This bleaching has resulted in a 50% mortality rate in observed corals in the waters off of Cape York in Northeastern , and a 12% bleaching rate in observed reefs throughout the world. Although regulators, especially endotherms, expend a significantly higher proportion of energy per unit of mass, the advantages of endothermy, particularly endogenous thermogenesis, have proven significant enough for selection.


Thermal coping mechanisms
The ability to maintain at varying temperatures is the most important characteristic in defining an endothermic eurytherm, whereas other, thermoconforming eurytherms like tardigrades are simply able to endure significant shifts in their internal body temperature that occur with ambient temperature changes. Eurythermic animals can be either conformers or regulators, meaning that their internal physiology can either vary with the external environment or maintain consistency regardless of the external environment, respectively. It is important to note that endotherms do not solely rely on internal thermogenesis for all parts of homeostasis or comfort; in fact, in many ways, they are equally as reliant upon behavior to regulate body temperature as ectotherms are. Reptiles are ectotherms, and therefore rely upon , basking (heliothermy), burrowing, and crowding with members of their species in order to regulate their body temperature within a narrow range and even to produce fevers to fight infection. Similarly, humans rely upon clothing, housing, air conditioning, and drinking to achieve the same goals, although humans are not considered indicative of endotherms on the whole. The sustained supply of oxygen to body tissues determines the body temperature range of an organism. Eurytherms that live in environments with large temperature changes adapt to higher temperatures through a variety of methods. In green crabs, the process of initial warming results in an increase of oxygen consumption and heart rate, accompanied by a decrease in and oxygen . As this warming continues, dissolved oxygen levels decrease below the threshold for full haemocyanin oxygen saturation. This heating then progressively releases -bound oxygen, saving energy in oxygen transport and resulting in an associated leveling off of .

Key to maintaining homeostasis, individual thermoregulation is the ability to maintain internal body temperature in humans, the most recognizable eurytherm. In humans, deep-body temperature is regulated by , which maintains this temperature despite changes in the external environment.

(2026). 9780077836375, McGraw-Hill Education.
' ability to survive in different ambient temperatures is a key factor in the species success, and one cited reason for why Homo sapiens eventually outcompeted Neanderthals ( Homo neanderthalensis). Humans have two major forms of . The first is , in which a creature produces involuntary contraction of in order to produce heat. In addition, shivering also signals the body to produce irisin, a hormone that has been shown to convert white fat to brown fat, which is used in non-shivering thermogenesis, the second type of human thermogenesis. Non-shivering thermogenesis occurs in the brown fat, which contains the uncoupling protein . This protein decreases the proton gradient generated in oxidative phosphorylation during the synthesis of ATP, the electron transport in the from the production of chemical energy (ATP). This creation of a gradient across the causes energy to be lost as heat. On the other hand, humans have only one method of cooling themselves, biologically speaking: . Cutaneous sweat glands produce sweat, which is made up of mostly water with a small amount of ions. Evaporation of this sweat helps to cool the blood beneath the skin, resulting in a cooling of deep-body temperature. While some organisms are eurythermic due to their ability to regulate internal body temperature, like humans, others have wildly different methods of extreme temperature tolerance. Tardigrades are able to enter an anhydrobiotic state, often called a tun, in order to both prevent and endure extreme temperatures. In this state, tardigrades decrease their bodily water to about 1–3% wt./wt. Although this state allows certain tardigrades to endure temperatures at the extremes of –273° and 150 °C at the extremes, tardigrades in their hydrated state are able to withstand temperatures as low as –196 °C. This displayed has led scientists to speculate that tardigrades could theoretically survive on , where temperatures regularly fluctuate between –123° and 25 °C, as well as even possibly the near absolute zero of . The tardigrade's ability to withstand extremely cold temperatures as a tun is a form of called cryobiosis. Although the high temperature endurance of tardigrades has been significantly less studied, their cryobiotic response to low temperatures has been well-documented. Tardigrades are able to withstand such cold temperatures not by avoiding freezing using antifreeze proteins as a freeze avoidance organism would, but rather by tolerating ice formation in the extracellular body water, activated by ice nucleating proteins.

In addition to other organisms, plants () can be either stenothermic or eurythermic. Plants inhabiting the boreal and climates generally tend to be cold-eurythermic, enduring temperatures as cold as –85°, and as warm as at least 20 °C, such as boreal deciduous conifers. This is in direct contrast to plants that typically inhabit more or montane regions, where plants may have purely tolerable range between only about 10° and 25 °C, such as the .


Eurythermal protein adaptation
The tolerance for extreme body temperatures in a given eurythermic organism is largely due to an increased temperature tolerance by the respective organism's homologous proteins. In particular, the proteins of a warm-adapted species may be inherently more eurythermal than a cold-adapted species, with warm-adapted species' proteins withstanding higher temperatures before beginning to denature, therefore avoiding possible cell death. Eurythermal species also have shown adaptations in protein synthesis rates compared to non-eurythermal similar species. Rainbow trout ) have shown constant protein synthesis rates \left(Q_{10}\right) over temperatures ranging from 5° to 20 °C, after acclimating to any temperature in this range for 1 month. In contrast, carp ) have shown significantly higher protein synthesis rates after acclimating to higher water temperatures (25 °C) than after acclimating to lower water temperatures (10 °C). This type of experiment is common throughout fish. A similar example is given by the Senegalese sole ( Solea senegalensis), which, when acclimated to temperatures of 26 °C, produced a significantly higher amount of , , GABA and compared to acclimation to 12 °C. This may mean that the aforementioned compounds aid in antioxidant defense, osmoregulatory processes, or energetic purposes at these temperatures.


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time