An eclipse is an astronomical event which occurs when an astronomical object or spacecraft is temporarily obscured, by passing into the shadow of another body or by having another body pass between it and the viewer. This alignment of three celestial objects is known as a syzygy. An eclipse is the result of either an occultation (completely hidden) or a transit (partially hidden). A "deep eclipse" (or "deep occultation") is when a small astronomical object is behind a bigger one. "What is a deep eclipse? The smaller star is behind the bigger star"
The term eclipse is most often used to describe either a solar eclipse, when the Moon's shadow crosses the Earth's surface, or a lunar eclipse, when the Moon moves into the Earth's shadow. However, it can also refer to such events beyond the Earth–Moon system: for example, a planet moving into the shadow cast by one of its moons, a moon passing into the shadow cast by its host planet, or a moon passing into the shadow of another moon. A binary star system can also produce eclipses if the plane of the orbit of its constituent stars intersects the observer's position.
For the special cases of solar and lunar eclipses, these only happen during an "eclipse season", the two times of each year when the plane of the Earth's orbit around the Sun crosses with the plane of the Moon's orbit around the Earth and the line defined by the intersecting planes points near the Sun. The type of solar eclipse that happens during each season (whether total, annular, hybrid, or partial) depends on of the Sun and Moon. If the orbit of the Earth around the Sun and the Moon's orbit around the Earth were both in the same plane with each other, then eclipses would happen every month. There would be a lunar eclipse at every full moon, and a solar eclipse at every new moon. It is because of the non-planar differences that eclipses are not a common event. If both orbits were perfectly circular, then each eclipse would be the same type every month.
Lunar eclipses can be viewed from the entire nightside half of the Earth. But solar eclipses, particularly total eclipses occurring at any one particular point on the Earth's surface, are very rare events that can be many decades apart.
Typically the cross-section of the objects involved in an astronomical eclipse is roughly disk-shaped. The region of an object's shadow during an eclipse is divided into three parts:
A total eclipse occurs when the observer is within the umbra, an annular eclipse when the observer is within the antumbra, and a partial eclipse when the observer is within the penumbra. During a lunar eclipse only the umbra and penumbra are applicable, because the antumbra of the Sun-Earth system lies far beyond the Moon. Analogously, Earth's apparent diameter from the viewpoint of the Moon is nearly four times that of the Sun and thus cannot produce an annular eclipse. The same terms may be used analogously in describing other eclipses, e.g., the antumbra of Deimos crossing Mars, or Phobos entering Mars's penumbra.
The first contact occurs when the eclipsing object's disc first starts to impinge on the light source; second contact is when the disc moves completely within the light source; third contact when it starts to move out of the light; and fourth or last contact when it finally leaves the light source's disc entirely.
For spherical bodies, when the occulting object is smaller than the star, the length ( L) of the umbra's cone-shaped shadow is given by:
where Rs is the radius of the star, Ro is the occulting object's radius, and r is the distance from the star to the occulting object. For Earth, on average L is equal to 1.384 kilometer, which is much larger than the Moon's semimajor axis of 3.844 km. Hence the umbral cone of the Earth can completely envelop the Moon during a lunar eclipse. If the occulting object has an atmosphere, however, some of the luminosity of the star can be refraction into the volume of the umbra. This occurs, for example, during an eclipse of the Moon by the Earth—producing a faint, red illumination of the Moon even at totality.
On Earth, the shadow cast during an eclipse moves very approximately at 1 km per sec. This depends on the location of the shadow on the Earth and the angle in which it is moving.
Between 1901 and 2100 there are the maximum of seven eclipses in:
Excluding penumbral lunar eclipses, there are a maximum of seven eclipses in:
Solar eclipses are relatively brief events that can only be viewed in totality along a relatively narrow track. Under the most favorable circumstances, a total solar eclipse can last for 7 minutes, 31 seconds, and can be viewed along a track that is up to 250 km wide. However, the region where a partial eclipse can be observed is much larger. The Moon's umbra will advance eastward at a rate of 1,700 km/h, until it no longer intersects the Earth's surface.
During a solar eclipse, the Moon can sometimes perfectly cover the Sun because its apparent size is nearly the same as the Sun's when viewed from the Earth. A total solar eclipse is in fact an occultation while an annular solar eclipse is a transit.
When observed at points in space other than from the Earth's surface, the Sun can be eclipsed by bodies other than the Moon. Two examples include when the crew of Apollo 12 observed the Earth to eclipse the Sun in 1969 and when the Cassini Space probe observed Saturn to eclipse the Sun in 2006. from right to left. Totality is shown with the first two images. These required a longer exposure time to make the details visible.|alt=|left]]
There are three types of lunar eclipses: penumbral, when the Moon crosses only the Earth's penumbra; partial, when the Moon crosses partially into the Earth's umbra; and total, when the Moon crosses entirely into the Earth's umbra. Total lunar eclipses pass through all three phases. Even during a total lunar eclipse, however, the Moon is not completely dark. Sunlight refracted through the Earth's atmosphere enters the umbra and provides a faint illumination. Much as in a sunset, the atmosphere tends to more strongly scatter light with shorter wavelengths, so the illumination of the Moon by refracted light has a red hue,
thus the phrase 'Blood Moon' is often found in descriptions of such lunar events as far back as eclipses are recorded.Ancient Timekeepers,
The first person to give scientific explanation on eclipses was Anaxagoras c500BC. Anaxagoras stated that the Moon shines by reflected light from the Sun.
In 5th century AD, solar and lunar eclipses were scientifically explained by Aryabhata, in his treatise Aryabhatiya. Aryabhata states that the Moon and planets shine by reflected sunlight and explains eclipses in terms of shadows cast by and falling on Earth. Aryabhata provides the computation and the size of the eclipsed part during an eclipse. Indian computations were very accurate that 18th-century French scientist Guillaume Le Gentil, during a visit to Pondicherry, India, found the Indian computations of the duration of the lunar eclipse of 30 August 1765 to be short by only 41 seconds, whereas Le Gentil's charts were long by 68 seconds.
By the 1600s, European astronomers were publishing books with diagrams explaining how lunar and solar eclipses occurred. In order to disseminate this information to a broader audience and decrease fear of the consequences of eclipses, booksellers printed broadsides explaining the event either using the science or via astrology.
The Graeco-Roman historian Cassius Dio, writing between AD 211–229, relates the anecdote that Emperor Claudius considered it necessary to prevent disturbance among the Roman population by publishing a prediction for a solar eclipse which would fall on his birthday anniversary 1. In this context, Cassius Dio provides a detailed explanation of solar and lunar eclipses.
Typically in mythology, eclipses were understood to be one variation or another of a spiritual battle between the sun and evil forces or spirits of darkness. More specifically, in Norse mythology, it is believed that there is a wolf by the name of Fenrir that is in constant pursuit of the Sun, and eclipses are thought to occur when the wolf successfully devours the divine Sun. Other Norse tribes believed that there are two wolves by the names of Sköll and Hati that are in pursuit of the Sun and the Moon, known by the names of Sol and Mani, and these tribes believed that an eclipse occurs when one of the wolves successfully eats either the Sun or the Moon.
In most types of mythologies and certain religions, eclipses were seen as a sign that the gods were angry and that danger was soon to come, so people often altered their actions in an effort to dissuade the gods from unleashing their wrath. In the Hinduism religion, for example, people often sing religious hymns for protection from the evil spirits of the eclipse, and many people of the Hindu religion refuse to eat during an eclipse to avoid the effects of the evil spirits. Hindu people living in India will also wash off in the Ganges, which is believed to be spiritually cleansing, directly following an eclipse to clean themselves of the evil spirits. In early Judaism and Christianity, eclipses were viewed as signs from God, and some eclipses were seen as a display of God's greatness or even signs of cycles of life and death. However, more ominous eclipses such as a blood moon were believed to be a divine sign that God would soon destroy their enemies.
The eclipses of the by Jupiter became accurately predictable once their orbital elements were known. During the 1670s, it was discovered that these events were occurring about 17 minutes later than expected when Jupiter was on the far side of the Sun. Ole Rømer deduced that the delay was caused by the time needed for light to travel from Jupiter to the Earth. This was used to produce the first estimate of the speed of light.
The timing of the Jovian satellite eclipses was also used to calculate an observer's longitude upon the Earth. By knowing the expected time when an eclipse would be observed at a standard longitude (such as Greenwich), the time difference could be computed by accurately observing the local time of the eclipse. The time difference gives the longitude of the observer because every hour of difference corresponded to 15° around the Earth's equator. This technique was used, for example, by Giovanni D. Cassini in 1679 to re-map France.
On the other three (Saturn, Uranus and Neptune) eclipses only occur at certain periods during the planet's orbit, due to their higher inclination between the orbits of the moon and the orbital plane of the planet. The moon Titan, for example, has an orbital plane tilted about 1.6° to Saturn's equatorial plane. But Saturn has an axial tilt of nearly 27°. The orbital plane of Titan only crosses the line of sight to the Sun at two points along Saturn's orbit. As the orbital period of Saturn is 29.7 years, an eclipse is only possible about every 15 years.
The maximum luminosity of an eclipsing binary system is equal to the sum of the luminosity contributions from the individual stars. When one star passes in front of the other, the luminosity of the system is seen to decrease. The luminosity returns to normal once the two stars are no longer in alignment.
The first eclipsing binary star system to be discovered was Algol, a star system in the constellation Perseus. Normally this star system has a visual magnitude of 2.1. However, every 2.867 days the magnitude decreases to 3.4 for more than nine hours. This is caused by the passage of the dimmer member of the pair in front of the brighter star. The concept that an eclipsing body caused these luminosity variations was introduced by John Goodricke in 1783.
Sun – Earth – Moon: Lunar eclipse | penumbral eclipse | partial lunar eclipse | central lunar eclipse
Sun – Phobos – Mars: Transit of Phobos from Mars | Solar eclipses on Mars
Sun – Deimos – Mars: Transit of Deimos from Mars | Solar eclipses on Mars
Other types: Solar eclipses on Jupiter | Solar eclipses on Saturn | Solar eclipses on Uranus | Solar eclipses on Neptune | Solar eclipses on Pluto
Eclipse cycles
Earth–Moon system
Solar eclipse
Lunar eclipse
Historical record
Eclipses in mythology and religion
Other planets and dwarf planets
Gas giants
Mars
Pluto
Mercury and Venus
Eclipsing binaries
Types
See also
External links
|
|