Chlorella is a genus of about thirteen species of single-celled or colonial green algae of the division Chlorophyta. The cells are spherical in shape, about 2 to 10 Micrometre in diameter, and are without flagella. Their chloroplasts contain the green photosynthetic pigments chlorophyll-a and chlorophyll b. In ideal conditions cells of Chlorella multiply rapidly, requiring only carbon dioxide, water, sunlight, and a small amount of to reproduce.
The name Chlorella is taken from the Greek language χλώρος, chlōros/ khlōros, meaning green, and the Latin diminutive suffix - ella, meaning small. German biochemist and cell physiologist Otto Heinrich Warburg, awarded with the Nobel Prize in Physiology or Medicine in 1931 for his research on cell respiration, also studied photosynthesis in Chlorella. In 1961, Melvin Calvin of the University of California received the Nobel Prize in Chemistry for his research on the pathways of Calvin cycle using Chlorella.
Chlorella has been considered as a source of food and energy because its photosynthetic efficiency can reach 8%, which exceeds that of other highly efficient crops such as sugar cane.
Asexual reproduction in Chlorella ellipsoides has been studied in detail and the following four phases have been observed during the asexual reproduction.
Some strains of "Chlorella" used for food are incorrectly identified, or correspond to genera that were classified out of true Chlorella. For example, Heterochlorella luteoviridis is typically known as Chlorella luteoviridis which is no longer considered a valid name.
Under certain growing conditions, Chlorella yields oils that are high in polyunsaturated fats— Chlorella minutissima has yielded eicosapentaenoic acid at 39.9% of total lipids.
Many institutions began to research the algae, including the Carnegie Institution, the Rockefeller Foundation, the NIH, UC Berkeley, the Atomic Energy Commission, and Stanford University. Following World War II, many Europeans were starving, and many Malthusianism attributed this not only to the war, but also to the inability of the world to produce enough food to support the increasing population. According to a 1946 FAO report, the world would need to produce 25 to 35% more food in 1960 than in 1939 to keep up with the increasing population, while health improvements would require a 90 to 100% increase. Because meat was costly and energy-intensive to produce, protein shortages were also an issue. Increasing cultivated area alone would go only so far in providing adequate nutrition to the population. The USDA calculated that, to feed the U.S. population by 1975, it would have to add 200 million acres (800,000 km2) of land, but only 45 million were available. One way to combat national food shortages was to increase the land available for farmers, yet the American frontier and farm land had long since been extinguished in trade for expansion and urban life. Hopes rested solely on new agricultural techniques and technologies. Because of these circumstances, an alternative solution was needed.
To cope with the upcoming postwar population boom in the United States and elsewhere, researchers decided to tap into the unexploited sea resources. Initial testing by the Stanford Research Institute showed Chlorella (when growing in warm, sunny, shallow conditions) could convert 20% of solar energy into a plant that, when dried, contains 50% protein. In addition, Chlorella contains fat and vitamins. The plant's photosynthetic efficiency allows it to yield more protein per unit area than any plant—one scientist predicted 10,000 tons of protein a year could be produced with just 20 workers staffing a 1000-acre (4-km2) Chlorella farm. The pilot research performed at Stanford and elsewhere led to immense press from journalists and newspapers, yet did not lead to large-scale algae production. Chlorella seemed like a viable option because of the technological advances in agriculture at the time and the widespread acclaim it got from experts and scientists who studied it. Algae researchers had even hoped to add a neutralized Chlorella powder to conventional food products, as a way to fortify them with vitamins and minerals.
When the preliminary laboratory results were published, the scientific community at first backed the possibilities of Chlorella. Science News Letter praised the optimistic results in an article entitled "Algae to Feed the Starving". John Burlew, the editor of the Carnegie Institution of Washington book Algal Culture-from Laboratory to Pilot Plant, stated, "the algae culture may fill a very real need",
Although the production of Chlorella looked promising and involved creative technology, it has not to date been cultivated on the scale some had predicted. It has not been sold on the scale of Spirulina, soybean products, or whole grains. Costs have remained high, and Chlorella has for the most part been sold as a health food, for cosmetics, or as animal feed. After a decade of experimentation, studies showed that following exposure to sunlight, Chlorella captured just 2.5% of the solar energy, not much better than conventional crops. Chlorella, too, was found by scientists in the 1960s to be impossible for humans and other animals to digest in its natural state due to the tough cell walls encapsulating the nutrients, which presented further problems for its use in American food production.
There is some support from animal studies of chlorella's ability to detoxify insecticides. Chlorella protothecoides accelerated the detoxification of rats poisoned with chlordecone, a persistent insecticide, decreasing the half-life of the toxin from 40 to 19 days. The ingested algae passed through the gastrointestinal tract unharmed, interrupted the enteric recirculation of the persistent insecticide, and subsequently eliminated the bound chlordecone with the feces.
|
|