2 | |
primordial element | |
naturally occurring by radioactive decay | |
synthetic element |
The chalcogens (ore forming) ( ) are the in group 16 of the periodic table.
Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six , leaving them two electrons short of a full outer shell. Their most common are −2, +2, +4, and +6. They have relatively low atomic radius, especially the lighter ones.
All of the naturally occurring chalcogens have some role in biological functions, either as a nutrient or a toxin. Selenium is an important nutrient (among others as a building block of selenocysteine) but is also commonly toxic. Tellurium often has unpleasant effects (although some organisms can use it), and polonium (especially the isotope polonium-210) is always harmful as a result of its radioactivity.
Sulfur has more than 20 , oxygen has nine, selenium has at least eight, polonium has two, and only one crystal structure of tellurium has so far been discovered. There are numerous organic chalcogen compounds. Not counting oxygen, organic sulfur compounds are generally the most common, followed by organic selenium compounds and organic tellurium compounds. This trend also occurs with chalcogen pnictogen and compounds containing chalcogens and carbon group elements.
Oxygen is generally obtained by air separation of air into nitrogen and oxygen. Sulfur is extracted from oil and natural gas. Selenium and tellurium are produced as byproducts of copper refining. Polonium is most available in naturally occurring actinide-containing materials. Livermorium has been synthesized in particle accelerators. The primary use of elemental oxygen is in steelmaking. Sulfur is mostly converted into sulfuric acid, which is heavily used in the chemical industry. Selenium's most common application is glassmaking. Tellurium compounds are mostly used in optical disks, electronic devices, and solar cells. Some of polonium's applications are due to its radioactivity.
2, 6 |
2, 8, 6 |
2, 8, 18, 6 |
2, 8, 18, 18, 6 |
2, 8, 18, 32, 18, 6 |
2, 8, 18, 32, 32, 18, 6 (predicted) (2025). 9789400702103, Springer Science+Business Media. ISBN 9789400702103 |
−183 | 0.00143 |
445 | 2.07 |
685 | 4.3 |
988 | 6.24 |
962 | 9.2 |
762–862 (predicted) | 14 (predicted) |
All chalcogens have six . All of the solid, stable chalcogens are soft
With the exception of livermorium, all chalcogens have at least one naturally occurring radioisotope: oxygen has trace 15O, sulfur has trace 35S, selenium has 82Se, tellurium has 128Te and 130Te, and polonium has 210Po.
Among the lighter chalcogens (oxygen and sulfur), the most neutron-poor isotopes undergo proton emission, the moderately neutron-poor isotopes undergo electron capture or β+ decay, the moderately neutron-rich isotopes undergo beta decay, and the most neutron rich isotopes undergo neutron emission. The middle chalcogens (selenium and tellurium) have similar decay tendencies as the lighter chalcogens, but no proton-emitting isotopes have been observed, and some of the most neutron-deficient isotopes of tellurium undergo alpha decay. Polonium isotopes tend to decay via alpha or beta decay. Isotopes with nonzero are more abundant in nature among the chalcogens selenium and tellurium than they are with sulfur.
Sulfur has over 20 known allotropes, which is more than any other element except carbon. The most common allotropes are in the form of eight-atom rings, but other molecular allotropes that contain as few as two atoms or as many as 20 are known. Other notable sulfur allotropes include rhombic sulfur and monoclinic sulfur. Rhombic sulfur is the more stable of the two allotropes. Monoclinic sulfur takes the form of long needles and is formed when liquid sulfur is cooled to slightly below its melting point. The atoms in liquid sulfur are generally in the form of long chains, but above 190 °C, the chains begin to break down. If liquid sulfur above 190 °C is freezing very rapidly, the resulting sulfur is amorphous or "plastic" sulfur. Gaseous sulfur is a mixture of diatomic sulfur (S2) and 8-atom rings.
Selenium has at least eight distinct allotropes. The gray allotrope, commonly referred to as the "metallic" allotrope, despite not being a metal, is stable and has a hexagonal crystal structure. The gray allotrope of selenium is soft, with a Mohs hardness of 2, and brittle. Four other allotropes of selenium are metastable. These include two monoclinic red allotropes and two amorphous allotropes, one of which is red and one of which is black. The red allotrope converts to the black allotrope in the presence of heat. The gray allotrope of selenium is made from on selenium atoms, while one of the red allotropes is made of stacks of selenium rings (Se8).
Tellurium is not known to have any allotropes, although its typical form is hexagonal. Polonium has two allotropes, which are known as α-polonium and β-polonium. α-polonium has a cubic crystal structure and converts to the rhombohedral β-polonium at 36 °C.
The chalcogens have varying crystal structures. Oxygen's crystal structure is monoclinic, sulfur's is orthorhombic, selenium and tellurium have the hexagonal crystal structure, while polonium has a cubic crystal structure.
For a chalcogen may accept two electrons according to the octet rule, leaving two . When an atom forms two , they form an angle between 90° and 120°. In 1+ , such as hydroxonium, a chalcogen forms three molecular orbitals arranged in a trigonal pyramidal fashion and one lone pair. Double bonds are also common in chalcogen compounds, for example in chalcogenates (see below).
The oxidation number of the most common chalcogen compounds with positive metals is −2. However the tendency for chalcogens to form compounds in the −2 state decreases towards the heavier chalcogens. Other oxidation numbers, such as −1 in pyrite and peroxide, do occur. The highest formal oxidation number is +6. This oxidation number is found in , , , polonates, and their corresponding acids, such as sulfuric acid.
Oxygen is the most electronegative element except for fluorine, and forms compounds with almost all of the chemical elements, including some of the . It commonly bonds with many metals and metalloids to form , including iron oxide, titanium oxide, and silicon oxide. Oxygen's most common oxidation state is −2, and the oxidation state −1 is also relatively common. With hydrogen it forms water and hydrogen peroxide. Organic oxygen compounds are ubiquitous in organic chemistry.
Sulfur's oxidation states are −2, +2, +4, and +6. Sulfur-containing analogs of oxygen compounds often have the prefix thio-. Sulfur's chemistry is similar to oxygen's, in many ways. One difference is that sulfur-sulfur are far weaker than oxygen-oxygen double bonds, but sulfur-sulfur are stronger than oxygen-oxygen single bonds. Organic sulfur compounds such as have a strong specific smell, and a few are utilized by some organisms.
Selenium's oxidation states are −2, +4, and +6. Selenium, like most chalcogens, bonds with oxygen. There are some organic selenium compounds, such as selenoproteins. Tellurium's oxidation states are −2, +2, +4, and +6. Tellurium forms the oxides tellurium monoxide, tellurium dioxide, and tellurium trioxide. Polonium's oxidation states are +2 and +4.
There are many acids containing chalcogens, including sulfuric acid, sulfurous acid, selenic acid, and telluric acid. All hydrogen chalcogenides are toxic except for water. Oxygen ions often come in the forms of oxide ions (), peroxide ions (), and hydroxide ions (). Sulfur ions generally come in the form of (), (), (), (), and (). Selenium ions usually come in the form of (), selenites () and (). Tellurium ions often come in the form of (). Molecules containing metal bonded to chalcogens are common as minerals. For example, pyrite (FeS2) is an iron ore, and the rare mineral calaverite is the ditelluride .
Although all group 16 elements of the periodic table, including oxygen, can be defined as chalcogens, oxygen and oxides are usually distinguished from chalcogens and . The term chalcogenide is more commonly reserved for , , and tellurides, rather than for .
Except for polonium, the chalcogens are all fairly similar to each other chemically. They all form X2− ions when reacting with electropositive metals.
and analogous compounds produce gases upon reaction with oxygen.
Elemental chalcogens react with certain lanthanide compounds to form lanthanide clusters rich in chalcogens. Uranium(IV) chalcogenol compounds also exist. There are also transition metal chalcogenols which have potential to serve as and stabilize .
All of the chalcogens form . In some cases this occurs with chalcogens bonding with two hydrogen atoms. However tellurium hydride and polonium hydride are both volatile and highly labile. Also, oxygen can bond to hydrogen in a 1:1 ratio as in hydrogen peroxide, but this compound is unstable.
Chalcogen compounds form a number of . For instance, sulfur forms the toxic sulfur dioxide and sulfur trioxide. Tellurium also forms oxides. There are some chalcogen sulfides as well. These include selenium sulfide, an ingredient in some .
Since 1990, a number of with chalcogens bonded to them have been detected. The chalcogens in these compounds are mostly sulfur, although some do contain selenium instead. One such chalcogen boride consists of two molecules of dimethyl sulfide attached to a boron-hydrogen molecule. Other important boron-chalcogen compounds include macropolyhedral systems. Such compounds tend to feature sulfur as the chalcogen. There are also chalcogen borides with two, three, or four chalcogens. Many of these contain sulfur but some, such as Na2B2Se7 contain selenium instead.
Early attempts to separate oxygen from air were hampered by the fact that air was thought of as a single element up to the 17th and 18th centuries. Robert Hooke, Mikhail Lomonosov, Ole Borch, and Pierre Bayden all successfully created oxygen, but did not realize it at the time. Oxygen was discovered by Joseph Priestley in 1774 when he focused sunlight on a sample of mercuric oxide and collected the resulting gas. Carl Wilhelm Scheele had also created oxygen in 1771 by the same method, but Scheele did not publish his results until 1777.
Tellurium was first discovered in 1783 by Franz Joseph Müller von Reichenstein. He discovered tellurium in a sample of what is now known as calaverite. Müller assumed at first that the sample was pure antimony, but tests he ran on the sample did not agree with this. Muller then guessed that the sample was bismuth sulfide, but tests confirmed that the sample was not that. For some years, Muller pondered the problem. Eventually he realized that the sample was gold bonded with an unknown element. In 1796, Müller sent part of the sample to the German chemist Martin Klaproth, who purified the undiscovered element. Klaproth decided to call the element tellurium after the Latin word for earth.
Selenium was discovered in 1817 by Jöns Jacob Berzelius. Berzelius noticed a reddish-brown sediment at a sulfuric acid manufacturing plant. The sample was thought to contain arsenic. Berzelius initially thought that the sediment contained tellurium, but came to realize that it also contained a new element, which he named selenium after the Greek moon goddess Selene.
After 1869, Dmitri Mendeleev proposed his periodic table placing oxygen at the top of "group VI" above sulfur, selenium, and tellurium. Chromium, molybdenum, tungsten, and uranium were sometimes included in this group, but they would be later rearranged as part of group VIB; uranium would later be moved to the actinide series. Oxygen, along with sulfur, selenium, tellurium, and later polonium would be grouped in group VIA, until the group's name was changed to group 16 in 1988.
The first attempt at creating livermorium was from 1976 to 1977 at the LBNL, who bombarded curium-248 with calcium-48, but were not successful. After several failed attempts in 1977, 1998, and 1999 by research groups in Russia, Germany, and the US, livermorium was created successfully in 2000 at the Joint Institute for Nuclear Research by bombarding curium-248 atoms with calcium-48 atoms. The element was known as ununhexium until it was officially named livermorium in 2012.
Oxygen's name comes from the Greek words oxy genes, meaning "acid-forming". Sulfur's name comes from either the Latin word sulfurium or the Sanskrit word sulvere; both of those terms are ancient words for sulfur. Selenium is named after the Greek goddess of the moon, Selene, to match the previously discovered element tellurium, whose name comes from the Latin word telus, meaning earth. Polonium is named after Marie Curie's country of birth, Poland. Livermorium is named for the Lawrence Livermore National Laboratory.
Oxygen makes up 21% of the atmosphere by weight, 89% of water by weight, 46% of the Earth's crust by weight, and 65% of the human body. Oxygen also occurs in many minerals, being found in all oxide minerals and hydroxide minerals, and in numerous other mineral groups. Stars of at least eight times the mass of the Sun also produce oxygen in their cores via nuclear fusion. Oxygen is the third-most abundant element in the universe, making up 1% of the universe by weight.
Sulfur makes up 0.035% of the Earth's crust by weight, making it the 17th most abundant element there and makes up 0.25% of the human body. It is a major component of soil. Sulfur makes up 870 parts per million of seawater and about 1 part per billion of the atmosphere. Sulfur can be found in elemental form or in the form of sulfide minerals, sulfate minerals, or sulfosalt minerals. Stars of at least 12 times the mass of the Sun produce sulfur in their cores via nuclear fusion. Sulfur is the tenth most abundant element in the universe, making up 500 parts per million of the universe by weight.
Selenium makes up 0.05 parts per million of the Earth's crust by weight. This makes it the 67th most abundant element in the Earth's crust. Selenium makes up on average 5 parts per million of the soils. Seawater contains around 200 parts per trillion of selenium. The atmosphere contains 1 nanogram of selenium per cubic meter. There are mineral groups known as selenates and selenites, but there are not many minerals in these groups. Selenium is not produced directly by nuclear fusion. Selenium makes up 30 parts per billion of the universe by weight.
There are only 5 parts per billion of tellurium in the Earth's crust and 15 parts per billion of tellurium in seawater. Tellurium is one of the eight or nine least abundant elements in the Earth's crust. There are a few dozen tellurate minerals and telluride minerals, and tellurium occurs in some minerals with gold, such as sylvanite and calaverite. Tellurium makes up 9 parts per billion of the universe by weight.
Polonium only occurs in trace amounts on Earth, via radioactive decay of uranium and thorium. It is present in uranium ores in concentrations of 100 micrograms per metric ton. Very minute amounts of polonium exist in the soil and thus in most food, and thus in the human body. The Earth's crust contains less than 1 part per billion of polonium, making it one of the ten rarest metals on Earth.
Livermorium is always produced artificially in particle accelerators. Even when it is produced, only a small number of atoms are synthesized at a time.
Sulfur can be mined in its elemental form, although this method is no longer as popular as it used to be. In 1865 a large deposit of elemental sulfur was discovered in the U.S. states of Louisiana and Texas, but it was difficult to extract at the time. In the 1890s, Herman Frasch came up with the solution of liquefying the sulfur with superheated steam and pumping the sulfur up to the surface. These days sulfur is instead more often extracted from oil, natural gas, and tar.
The world production of selenium is around 1500 metric tons per year, out of which roughly 10% is recycled. Japan is the largest producer, producing 800 metric tons of selenium per year. Other large producers include Belgium (300 metric tons per year), the United States (over 200 metric tons per year), Sweden (130 metric tons per year), and Russia (100 metric tons per year). Selenium can be extracted from the waste from the process of electrolytically refining copper. Another method of producing selenium is to farm selenium-gathering plants such as milk vetch. This method could produce three kilograms of selenium per acre, but is not commonly practiced.
Tellurium is mostly produced as a by-product of the processing of copper. Tellurium can also be refined by electrolytic reduction of sodium telluride. The world production of tellurium is between 150 and 200 metric tons per year. The United States is one of the largest producers of tellurium, producing around 50 metric tons per year. Peru, Japan, and Canada are also large producers of tellurium.
Until the creation of nuclear reactors, all polonium had to be extracted from uranium ore. In modern times, most isotopes of polonium are produced by bombarding bismuth with neutrons. Polonium can also be produced by high in nuclear reactors. Approximately 100 grams of polonium are produced yearly. All the polonium produced for commercial purposes is made in the Ozersk nuclear reactor in Russia. From there, it is taken to Samara, Russia for purification, and from there to St. Petersburg for distribution. The United States is the largest consumer of polonium.
All livermorium is produced artificially in particle accelerators. The first successful production of livermorium was achieved by bombarding curium-248 atoms with calcium-48 atoms. As of 2011, roughly 25 atoms of livermorium had been synthesized.
Most sulfur produced is transformed into sulfur dioxide, which is further transformed into sulfuric acid, a very common industrial chemical. Other common uses include being a key ingredient of gunpowder and Greek fire, and being used to change soil pH. Sulfur is also mixed into rubber to vulcanize it. Sulfur is used in some types of concrete and fireworks. 60% of all sulfuric acid produced is used to generate phosphoric acid. Sulfur is used as a pesticide (specifically as an acaricide and fungicide) on "orchard, ornamental, vegetable, grain, and other crops."
Around 40% of all selenium produced goes to glassmaking. 30% of all selenium produced goes to metallurgy, including manganese production. 15% of all selenium produced goes to agriculture. Electronics such as photovoltaic claim 10% of all selenium produced. account for 5% of all selenium produced. Historically, machines such as and used one-third of all selenium produced, but this application is in steady decline.
Tellurium suboxide, a mixture of tellurium and tellurium dioxide, is used in the rewritable data layer of some CD-RW and DVD-RW. Bismuth telluride is also used in many microelectronic devices, such as Photodetector. Tellurium is sometimes used as an alternative to sulfur in vulcanized rubber. Cadmium telluride is used as a high-efficiency material in solar panels.
Some of polonium's applications relate to the element's radioactivity. For instance, polonium is used as an Alpha particle generator for research. Polonium alloyed with beryllium provides an efficient neutron source. Polonium is also used in nuclear batteries. Most polonium is used in antistatic devices. Livermorium does not have any uses whatsoever due to its extreme rarity and short half-life.
Organochalcogen compounds are involved in the semiconductor process. These compounds also feature into ligand chemistry and biochemistry. One application of chalcogens themselves is to manipulate redox couples in supramolecular chemistry (chemistry involving non-covalent bond interactions). This application leads on to such applications as crystal packing, assembly of large molecules, and biological recognition of patterns. The secondary bonding interactions of the larger chalcogens, selenium and tellurium, can create organic solvent-holding acetylene nanotubes. Chalcogen interactions are useful for conformational analysis and stereoelectronic effects, among other things. Chalcogenides with through bonds also have applications. For instance, divalent sulfur can stabilize carbanions, centers, and radical. Chalcogens can confer upon ligands (such as DCTO) properties such as being able to transform copper to Cu(I). Studying chalcogen interactions gives access to radical cations, which are used in mainstream synthetic chemistry. Metallic redox centers of biological importance are tunable by interactions of ligands containing chalcogens, such as methionine and selenocysteine. Also, chalcogen through-bonds can provide insight about the process of electron transfer.
All animals need significant amounts of sulfur. Some amino acids, such as cysteine and methionine contain sulfur. Plant roots take up sulfate ions from the soil and reduce it to sulfide ions. also use sulfur to attach to useful metal atoms in the body and sulfur similarly attaches itself to poisonous metal atoms like cadmium to haul them to the safety of the liver. On average, humans consume 900 milligrams of sulfur each day. Sulfur compounds, such as those found in skunk spray often have strong odors.
All animals and some plants need trace amounts of selenium, but only for some specialized enzymes. Humans consume on average between 6 and 200 micrograms of selenium per day. Mushrooms and are especially noted for their high selenium content. Selenium in foods is most commonly found in the form of amino acids such as selenocysteine and selenomethionine. Selenium can protect against heavy metal poisoning.
Tellurium is not known to be needed for animal life, although a few fungi can incorporate it in compounds in place of selenium. Microorganisms also absorb tellurium and emit dimethyl telluride. Most tellurium in the blood stream is excreted slowly in urine, but some is converted to dimethyl telluride and released through the lungs. On average, humans ingest about 600 micrograms of tellurium daily. Plants can take up some tellurium from the soil. Onions and garlic have been found to contain as much as 300 parts per million of tellurium in dry weight.
Polonium has no biological role, and is highly toxic on account of being radioactive.
Sulfur is generally nontoxic and is even a vital nutrient for humans. However, in its elemental form it can cause redness in the eyes and skin, a burning sensation and a cough if inhaled, a burning sensation and diarrhoea and/or catharsis if ingested, and can irritate the mucous membranes. An excess of sulfur can be toxic for Cattle because microbes in the of cows produce toxic hydrogen sulfide upon reaction with sulfur. Many sulfur compounds, such as hydrogen sulfide (H2S) and sulfur dioxide (SO2) are highly toxic.
Selenium is a trace nutrient required by humans on the order of tens or hundreds of micrograms per day. A dose of over 450 micrograms can be toxic, resulting in bad breath and body odor. Extended, low-level exposure, which can occur at some industries, results in weight loss, anemia, and dermatitis. In many cases of selenium poisoning, selenous acid is formed in the body. Hydrogen selenide (H2Se) is highly toxic.
Exposure to tellurium can produce unpleasant side effects. As little as 10 micrograms of tellurium per cubic meter of air can cause notoriously unpleasant breath, described as smelling like rotten garlic. Acute tellurium poisoning can cause vomiting, gut inflammation, internal bleeding, and respiratory failure. Extended, low-level exposure to tellurium causes tiredness and indigestion. Sodium tellurite (Na2TeO3) is lethal in amounts of around 2 grams.
Polonium is dangerous as an alpha particle emitter. If ingested, polonium-210 is a million times as toxic as hydrogen cyanide by weight; it has been used as a murder weapon in the past, most famously to kill Alexander Litvinenko. Polonium poisoning can cause nausea, vomiting, anorexia, and lymphopenia. It can also damage and white blood cells. Polonium-210 is only dangerous if ingested or inhaled because its alpha particle emissions cannot penetrate human skin. Polonium-209 is also toxic, and can cause leukemia.
|
|