Biological control or biocontrol is a method of pest control, whether pest animals such as and , , or pathogens affecting animals or phytopathology by bioeffector. It relies on predation, parasitism, herbivory, or other natural mechanisms, but typically also involves an active human management role. It can be an important component of integrated pest management (IPM) programs.
There are three basic strategies for biological control: classical (importation), where a natural enemy of a pest is introduced in the hope of achieving control; inductive (augmentation), in which a large population of natural enemies are administered for quick pest control; and inoculative (conservation), in which measures are taken to maintain natural enemies through regular reestablishment.
Natural enemies of insects play an important part in limiting the densities of potential pests. Biological control agents such as these include Predation, , , and competitors. Biological control agents of plant diseases are most often referred to as antagonists. Biological control agents of weeds include seed predators, , and plant pathogens.
Biological control can have side-effects on biodiversity through attacks on non-target species by any of the above mechanisms, especially when a species is introduced without a thorough understanding of the possible consequences.
Biological control techniques as we know them today started to emerge in the 1870s. During this decade, in the US, the Missouri State Entomologist C. V. Riley and the Illinois State Entomologist W. LeBaron began within-state redistribution of parasitoids to control crop pests. The first international shipment of an insect as a biological control agent was made by Charles V. Riley in 1873, shipping to France the predatory mites Tyroglyphus phylloxera to help fight the grapevine phylloxera (Phylloxera) that was destroying grapevines in France. The United States Department of Agriculture (USDA) initiated research in classical biological control following the establishment of the Division of Entomology in 1881, with C. V. Riley as Chief. The first importation of a parasitoidal wasp into the United States was that of the braconid Cotesia glomerata in 1883–1884, imported from Europe to control the invasive cabbage white butterfly, Pieris rapae. In 1888–1889 the vedalia beetle, Novius cardinalis, a lady beetle, was introduced from Australia to California to control the cottony cushion scale, Icerya purchasi. This had become a major problem for the newly developed citrus industry in California, but by the end of 1889, the cottony cushion scale population had already declined. This great success led to further introductions of beneficial insects into the US.Coulson, J. R.; Vail, P. V.; Dix M.E.; Nordlund, D.A.; Kauffman, W.C.; Eds. 2000. 110 years of biological control research and development in the United States Department of Agriculture: 1883–1993. U.S. Department of Agriculture, Agricultural Research Service. pages=3–11
In 1905 the USDA initiated its first large-scale biological control program, sending entomologists to Europe and Japan to look for natural enemies of the spongy moth, Lymantria dispar dispar, and the brown-tail moth, Brown-tail, invasive pests of trees and shrubs. As a result, nine parasitoids (solitary wasps) of the spongy moth, seven of the brown-tail moth, and two predators of both moths became established in the US. Although the spongy moth was not fully controlled by these natural enemies, the frequency, duration, and severity of its outbreaks were reduced and the program was regarded as successful. This program also led to the development of many concepts, principles, and procedures for the implementation of biological control programs.
Opuntia were introduced into Queensland, Australia as ornamental plants, starting in 1788. They quickly spread to cover over 25 million hectares of Australia by 1920, increasing by 1 million hectares per year. Digging, burning, and crushing all proved ineffective. Two control agents were introduced to help control the spread of the plant, the cactus moth Cactoblastis cactorum, and the scale insect Dactylopius. Between 1926 and 1931, tens of millions of cactus moth eggs were distributed around Queensland with great success, and by 1932, most areas of prickly pear had been destroyed.
The first reported case of a classical biological control attempt in Canada involves the parasitoidal wasp Trichogramma minutum. Individuals were caught in New York State and released in Ontario gardens in 1882 by William Saunders, a trained chemist and first Director of the Dominion Experimental Farms, for controlling the invasive currantworm Nematus ribesii. Between 1884 and 1908, the first Dominion Entomologist, James Fletcher, continued introductions of other parasitoids and pathogens for the control of pests in Canada.
To be most effective at controlling a pest, a biological control agent requires a colonizing ability which allows it to keep pace with changes to the habitat in space and time. Control is greatest if the agent has temporal persistence so that it can maintain its population even in the temporary absence of the target species, and if it is an opportunistic forager, enabling it to rapidly exploit a pest population.
One of the earliest successes was in controlling Icerya purchasi (cottony cushion scale) in Australia, using a predatory insect Rodolia cardinalis (the vedalia beetle). This success was repeated in California using the beetle and a parasitoidal fly, Cryptochaetum iceryae. Other successful cases include the control of Antonina graminis in Texas by Neodusmetia sangwani in the 1960s.
Damage from Hypera postica, the alfalfa weevil, a serious introduced pest of forage, was substantially reduced by the introduction of natural enemies. 20 years after their introduction the population of in the alfalfa area treated for alfalfa weevil in the Northeastern United States remained 75 percent down.
Alligator weed was introduced to the United States from South America. It takes root in shallow water, interfering with navigation, irrigation, and flood control. The alligator weed flea beetle and two other biological controls were released in Florida, greatly reducing the amount of land covered by the plant. Another aquatic weed, the giant salvinia ( Salvinia molesta) is a serious pest, covering waterways, reducing water flow and harming native species. Control with the salvinia weevil ( Cyrtobagous salviniae) and the salvinia stem-borer moth ( Samea multiplicalis) is effective in warm climates, and in Zimbabwe, a 99% control of the weed was obtained over a two-year period.
Small, commercially-reared parasitoidal , Trichogramma ostriniae, provide limited and erratic control of the European corn borer ( Ostrinia nubilalis), a serious pest. Careful formulations of the bacterium Bacillus thuringiensis are more effective. The O. nubilalis integrated control releasing Tricogramma brassicae (egg parasitoid) and later Bacillus thuringiensis subs. kurstaki (larvicide effect) reduce pest damages more than insecticide treatments
The population of Levuana iridescens, the Levuana moth, a serious coconut pest in Fiji, was brought under control by a classical biological control program in the 1920s.
An example of inoculative release occurs in the horticultural production of several crops in . Periodic releases of the parasitoidal wasp, Encarsia formosa, are used to control greenhouse whitefly, while the predatory mite Phytoseiulus persimilis is used for control of the two-spotted spider mite.
The egg parasite Trichogramma is frequently released inundatively to control harmful moths. New way for inundative releases are now introduced i.e. use of drones. Egg parasitoids are able to find the eggs of the target host by means of several cues. Kairomones were found on moth scales. Similarly, Bacillus thuringiensis and other microbial insecticides are used in large enough quantities for a rapid effect. Recommended release rates for Trichogramma in vegetable or field crops range from 5,000 to 200,000 per acre (1 to 50 per square metre) per week according to the level of pest infestation. Similarly, nematodes that kill insects (that are entomopathogenic) are released at rates of millions and even billions per acre for control of certain soil-dwelling insect pests.
Cropping systems can be modified to favor natural enemies, a practice sometimes referred to as habitat manipulation. Providing a suitable habitat, such as a Windbreak, hedgerow, or beetle bank where beneficial insects such as parasitoidal wasps can live and reproduce, can help ensure the survival of populations of natural enemies. Things as simple as leaving a layer of fallen leaves or mulch in place provides a suitable food source for worms and provides a shelter for insects, in turn being a food source for such beneficial mammals as and . and stacks of wood can provide shelter for invertebrates and small mammals. Long grass and support amphibians. Not removing dead annuals and non-hardy plants in the autumn allow insects to make use of their hollow stems during winter. In California, prune trees are sometimes planted in grape vineyards to provide an improved overwintering habitat or refuge for a key grape pest parasitoid. The providing of artificial shelters in the form of wooden caskets, or is also sometimes undertaken, particularly in gardens, to make a cropped area more attractive to natural enemies. For example, Dermaptera are natural predators that can be encouraged in gardens by hanging upside-down flowerpots filled with straw or wood wool. Green lacewings can be encouraged by using plastic bottles with an open bottom and a roll of cardboard inside. Birdhouses enable insectivorous birds to nest; the most useful birds can be attracted by choosing an opening just large enough for the desired species.
In cotton production, the replacement of broad-spectrum insecticides with selective control measures such as Bt cotton can create a more favorable environment for natural enemies of cotton pests due to reduced insecticide exposure risk. Such predators or parasitoids can control pests not affected by the Bt protein. Reduced prey quality and abundance associated with increased control from Bt cotton can also indirectly decrease natural enemy populations in some cases, but the percentage of pests eaten or parasitized in Bt and non-Bt cotton are often similar.
The larvae of many hoverfly species principally feed upon , one larva devouring up to 400 in its lifetime. Their effectiveness in commercial crops has not been studied.
The running crab spider Philodromus cespitum also prey heavily on aphids, and act as a biological control agent in European fruit orchards.Michalko, Radek; Dvoryankina, Viktoriya (1 June 2019). "Intraspecific phenotypic variation in functional traits of a generalist predator in an agricultural landscape". Agriculture, Ecosystems & Environment. 278: 35–42. doi:10.1016/j.agee.2019.03.018.
Several species of entomopathogenic nematode are important predators of insect and other invertebrate pests. Entomopathogenic nematodes form a stress–resistant stage known as the infective juvenile. These spread in the soil and infect suitable insect hosts. Upon entering the insect they move to the hemolymph where they recover from their stagnated state of development and release their Photorhabdus Symbiosis. The bacterial symbionts reproduce and release toxins, which then kill the host insect. Phasmarhabditis hermaphrodita is a microscopic nematode that kills slugs. Its complex life cycle includes a free-living, infective stage in the soil where it becomes associated with a pathogenic bacteria such as Moraxella osloensis. The nematode enters the slug through the posterior mantle region, thereafter feeding and reproducing inside, but it is the bacteria that kill the slug. The nematode is available commercially in Europe and is applied by watering onto moist soil. Entomopathogenic nematodes have a limited shelf life because of their limited resistance to high temperature and dry conditions. The type of soil they are applied to may also limit their effectiveness.
Species used to control spider mites include the predatory mites Phytoseiulus persimilis, Neoseilus californicus, and Amblyseius cucumeris, the predatory midge Feltiella acarisuga, and a ladybird Stethorus punctillum. The bug Orius insidiosus has been successfully used against the two-spotted spider mite and the western flower thrips ( Frankliniella occidentalis).
Predators including Cactoblastis cactorum (mentioned above) can also be used to destroy invasive plant species. As another example, the poison hemlock moth ( Agonopterix alstroemeriana) can be used to control Conium maculatum ( Conium maculatum). During its larval stage, the moth strictly consumes its host plant, poison hemlock, and can exist at hundreds of larvae per individual host plant, destroying large swathes of the hemlock.
For rodent pests, Farm cat are effective biological control when used in conjunction with reduction of "harborage"/hiding locations. While cats are effective at preventing rodent Irruptive growth, they are not effective for eliminating pre-existing severe infestations. Barn owls are also sometimes used as biological rodent control. Although there are no quantitative studies of the effectiveness of barn owls for this purpose, they are known rodent predators that can be used in addition to or instead of cats; they can be encouraged into an area with nest boxes.
In Honduras, where the mosquito Aedes aegypti was transmitting dengue fever and other infectious diseases, biological control was attempted by a community action plan; , baby , and juvenile tilapia were added to the wells and tanks where the mosquito breeds and the mosquito larvae were eliminated.
Even amongst arthropods usually thought of as obligate of animals (especially other arthropods), flower food sources (nectar and to a lesser degree pollen) are often useful adjunct sources. It had been noticed in one study that adult Adalia bipunctata (predator and common biocontrol of Ephestia kuehniella) could survive on flowers but never completed its life cycle, so a meta-analysis was done to find such an overall trend in previously published data, if it existed. In some cases floral resources are outright necessary. Overall, floral resources (and an imitation, i.e. sugar water) increase longevity and fecundity, meaning even predatory population numbers can depend on non-prey food abundance. Thus biocontrol population maintenance – and success – may depend on nearby flowers.
Parasitoids are among the most widely used biological control agents. Commercially, there are two types of rearing systems: short-term daily output with high production of parasitoids per day, and long-term, low daily output systems. In most instances, production will need to be matched with the appropriate release dates when susceptible host species at a suitable phase of development will be available. Larger production facilities produce on a yearlong basis, whereas some facilities produce only seasonally. Rearing facilities are usually a significant distance from where the agents are to be used in the field, and transporting the parasitoids from the point of production to the point of use can pose problems. Shipping conditions can be too hot, and even vibrations from planes or trucks can adversely affect parasitoids.
Encarsia formosa is a small parasitoid wasp attacking whitefly, sap-feeding insects which can cause wilting and Sooty mold in glasshouse vegetable and ornamental crops. It is most effective when dealing with low level infestations, giving protection over a long period of time. The wasp lays its eggs in young whitefly 'scales', turning them black as the parasite larvae pupate. Gonatocerus ashmeadi (Hymenoptera: Mymaridae) has been introduced to control the glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae) in French Polynesia and has successfully controlled ~95% of the pest density.
The eastern spruce budworm is an example of a destructive insect in fir and spruce forests. Birds are a natural form of biological control, but the Trichogramma minutum, a species of parasitic wasp, has been investigated as an alternative to more controversial chemical controls.
There are a number of recent studies pursuing sustainable methods for controlling urban cockroaches using parasitic wasps. Since most cockroaches remain in the sewer system and sheltered areas which are inaccessible to insecticides, employing active-hunter wasps is a strategy to try and reduce their populations.
The use of pathogens against was unknown until a groundbreaking 1972 proposal by Zettler and Freeman. Up to that point biocontrol of any kind had not been used against any water weeds. In their review of the possibilities, they noted the lack of interest and information thus far, and listed what was known of pests-of-pests – whether pathogens or not. They proposed that this should be relatively straightforward to apply in the same way as other biocontrols. And indeed in the decades since, the same biocontrol methods that are routine on land have become common in the water.
Bacillus spp.,p.94-5, II. Biocontrol Modes of Action fluorescent Pseudomonads, and are controls of various fungal pathogens.p.94
Pathogenic fungi may be controlled by other fungi, or bacteria or yeasts, such as: Gliocladium spp., mycoparasite Pythium spp., binucleate types of Rhizoctonia spp., and Laetisaria spp.
The fungi Cordyceps and Metacordyceps are deployed against a wide spectrum of arthropods. Entomophaga is effective against pests such as the Myzus persicae.
Several members of Chytridiomycota and Blastocladiomycota have been explored as agents of biological control. From Chytridiomycota, Synchytrium is being considered as a control agent of the yellow star thistle ( Centaurea solstitialis) in the United States.
A mammalian virus, the rabbit haemorrhagic disease virus was introduced to Australia to attempt to control the European rabbit populations there. It escaped from quarantine and spread across the country, killing large numbers of rabbits. Very young animals survived, passing immunity to their offspring in due course and eventually producing a virus-resistant population. Introduction into New Zealand in the 1990s was similarly successful at first, but a decade later, immunity had developed and populations had returned to pre-RHD levels.
RNA are controls of various fungal pathogens.
The Australian bush fly, Musca vetustissima, is a major nuisance pest in Australia, but native decomposers found in Australia are not adapted to feeding on cow dung, which is where bush flies breed. Therefore, the Australian Dung Beetle Project (1965–1985), led by George Bornemissza of the Commonwealth Scientific and Industrial Research Organisation, released forty-nine species of dung beetle, to reduce the amount of dung and therefore also the potential breeding sites of the fly.
Vertebrate animals tend to be generalist feeders, and seldom make good biological control agents; many of the classic cases of "biocontrol gone awry" involve vertebrates. For example, the cane toad ( Rhinella marina) was intentionally introduced to Australia to control the cane beetle ( Dermolepida albohirtum), and other pests of sugar cane. 102 toads were obtained from Hawaii and bred in captivity to increase their numbers until they were released into the sugar cane fields of the tropic north in 1935. It was later discovered that the toads could not jump very high and so were unable to eat the cane beetles which stayed on the upper stalks of the cane plants. However, the toad thrived by feeding on other insects and soon spread very rapidly; it took over native amphibian habitat and brought foreign disease to native and , dramatically reducing their populations. Also, when it is threatened or handled, the cane toad releases poison from on its shoulders; native Australian species such as , , and that attempted to eat the toad were harmed or killed. However, there has been some recent evidence that native predators are adapting, both physiologically and through changing their behaviour, so in the long run, their populations may recover.
Rhinocyllus conicus, a seed-feeding weevil, was introduced to North America to control exotic Carduus nutans ( Carduus nutans) and Cirsium arvense ( Cirsium arvense). However, the weevil also attacks native thistles, harming such species as the Endemism Platte thistle ( Cirsium neomexicanum) by selecting larger plants (which reduced the gene pool), reducing seed production and ultimately threatening the species' survival. Similarly, the weevil Larinus planus was also used to try to control the Cirsium arvense, but it damaged other thistles as well. This included one species classified as threatened.
The small Asian mongoose ( Herpestus javanicus) was introduced to Hawaii in order to control the rat population. However, the mongoose was diurnal, and the rats emerged at night; the mongoose, therefore, preyed on the endemic birds of Hawaii, especially their , more often than it ate the rats, and now both rats and mongooses threaten the birds. This introduction was undertaken without understanding the consequences of such an action. No regulations existed at the time, and more careful evaluation should prevent such releases now.
The sturdy and prolific eastern mosquitofish ( Gambusia holbrooki) is a native of the southeastern United States and was introduced around the world in the 1930s and '40s to feed on mosquito larvae and thus combat malaria. However, it has thrived at the expense of local species, causing a decline of endemic fish and frogs through competition for food resources, as well as through eating their eggs and larvae.
Types of biological pest control
Importation
Augmentation
Conservation
Biological control agents
Predators
Parasitoids
Pathogens
Bacteria
Colombia mosquito control
Fungi
Viruses
Oomycota
Competitors
Combined use of parasitoids and pathogens
Secondary plants
Target pests
Fungal pests
Difficulties
Side effects
Grower education
Related techniques
See also
Further reading
General
Effects on native biodiversity
Economic effects
External links
|
|