In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decisionmaking) and deduce valid (referred to as automated reasoning), achieving automation eventually. Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus".[Blair, Ann, Duguid, Paul, Goeing, AnjaSilvia and Grafton, Anthony. Information: A Historical Companion, Princeton: Princeton University Press, 2021. p. 247]
In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no welldefined correct or optimal result.[David A. Grossman, Ophir Frieder, Information Retrieval: Algorithms and Heuristics, 2nd edition, 2004, ]
As an effective method, an algorithm can be expressed within a finite amount of space and time,["Any classical mathematical algorithm, for example, can be described in a finite number of English words" (Rogers 1987:2).] and in a welldefined formal language[Well defined with respect to the agent that executes the algorithm: "There is a computing agent, usually human, which can react to the instructions and carry out the computations" (Rogers 1987:2).] for calculating a function.["an algorithm is a procedure for computing a function (with respect to some chosen notation for integers) ... this limitation (to numerical functions) results in no loss of generality", (Rogers 1987:1).] Starting from an initial state and initial input (perhaps Empty string),["An algorithm has zero or more inputs, i.e., Quantity which are given to it initially before the algorithm begins" (Knuth 1973:5).] the instructions describe a computation that, when executed, proceeds through a finite["A procedure which has all the characteristics of an algorithm except that it possibly lacks finiteness may be called a 'computational method (Knuth 1973:5).] number of welldefined successive states, eventually producing "output"["An algorithm has one or more outputs, i.e. quantities which have a specified relation to the inputs" (Knuth 1973:5).] and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.[Whether or not a process with random interior processes (not including the input) is an algorithm is debatable. Rogers opines that: "a computation is carried out in a discrete stepwise fashion, without the use of continuous methods or analogue devices ... carried forward deterministically, without resort to random methods or devices, e.g., dice" (Rogers 1987:2).]
History
The concept of algorithms has existed since antiquity.
Arithmetic algorithms, such as a division algorithm, were used by ancient Babylonian mathematicians c. 2500 BC and Egyptian mathematicians c. 1550 BC.
[ Greek mathematicians later used algorithms in 240 BC in the sieve of Eratosthenes for finding prime numbers, and the Euclidean algorithm for finding the greatest common divisor of two numbers.] Arabic mathematicians such as alKindi in the 9th century used cryptographic algorithms for codebreaking, based on frequency analysis.[
]
The word algorithm is derived from the Latin translation, Algoritmi de numero Indorum, of the 9thcentury Persian mathematician Muhammad ibn Musa alKhwarizmi'
/ref>
AlKhwarizmi was a mathematician, astronomer, and geographer, who acted as a scholar in the House of Wisdom in Baghdad, whose name means "the native of Khwarazm", a region that was part of Greater Iran and is now in Uzbekistan. In about the year 825, alKhwarizmi wrote an Arabic language treatise on the Hindu–Arabic numeral system, which was translated into Latin during the 12th century. The manuscript starts with the phrase Dixit Algorizmi ("Thus spoke AlKhwarizmi"), where "Algorizmi" was the translator's Latinization of AlKhwarizmi's name.
AlKhwarizmi was the most widely read mathematician in Europe in the late Middle Ages, primarily through another of his books, the AlJabr.[ Foremost mathematical texts in history , according to Carl B. Boyer.] In late medieval Latin, algorismus, English "algorism", the corruption of his name, meant the "decimal number system". In the 15th century, under the influence of the Greek word ἀριθμός ( arithmos), "number" ( cf. "arithmetic"), the Latin word was altered to algorithmus, and the corresponding English term "algorithm" is first attested in the 17th century; the modern sense was introduced in the 19th century.[ Oxford English Dictionary, Third Edition, 2012 s.v.]
Indian mathematics was predominantly algorithmic.
Algorithms that are representative of the Indian mathematical tradition range from the ancient Sulbasutras to the medieval texts of the Kerala School.
In English, the word algorithm was first used in about 1230 and then by Geoffrey Chaucer in 1391. English adopted the French term, but it was not until the late 19th century that "algorithm" took on the meaning that it has in modern English.
Another early use of the word is from 1240, in a manual titled Carmen de Algorismo composed by Alexandre de Villedieu. It begins with:
which translates to:
The poem is a few hundred lines long and summarizes the art of calculating with the new styled Indian dice ( Tali Indorum), or Hindu numerals.
A partial formalization of the modern concept of algorithm began with attempts to solve the Entscheidungsproblem (decision problem) posed by David Hilbert in 1928. Later formalizations were framed as attempts to define "effective calculability"[Kleene 1943 in Davis 1965:274] or "effective method".[Rosser 1939 in Davis 1965:225] Those formalizations included the Gödel–Jacques Herbrand–Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church's lambda calculus of 1936, Emil Post's Formulation 1 of 1936, and Alan Turing's Turing machines of 1936–37 and 1939.
Informal definition
An informal definition could be "a set of rules that precisely defines a sequence of operations",
[Stone 1973:4] which would include all
(including programs that do not perform numeric calculations), and (for example) any prescribed
bureaucratic procedure
[
]
or
Cookbook recipe.
[
]
In general, a program is only an algorithm if it stops eventually[Stone requires that "it must terminate in a finite number of steps" (Stone 1973:7–8).]—even though infinite loops may sometimes prove desirable.
A prototypical example of an algorithm is the Euclidean algorithm, which is used to determine the maximum common divisor of two integers; an example (there are others) is described by the flowchart above and as an example in a later section.
offer an informal meaning of the word "algorithm" in the following quotation:
An "enumerably infinite set" is one whose elements can be put into onetoone correspondence with the integers. Thus Boolos and Jeffrey are saying that an algorithm implies instructions for a process that "creates" output integers from an arbitrary "input" integer or integers that, in theory, can be arbitrarily large. For example, an algorithm can be an algebraic equation such as y = m + n (i.e., two arbitrary "input variables" m and n that produce an output y), but various authors' attempts to define the notion indicate that the word implies much more than this, something on the order of (for the addition example):
 Precise instructions (in a language understood by "the computer")
[cf Stone 1972:5] for a fast, efficient, "good"[Knuth 1973:7 states: "In practice, we not only want algorithms, but we also want good algorithms ... one criterion of goodness is the length of time taken to perform the algorithm ... other criteria are the adaptability of the algorithm to computers, its simplicity, and elegance, etc."] process that specifies the "moves" of "the computer" (machine or human, equipped with the necessary internally contained information and capabilities)[cf Stone 1973:6] to find, decode, and then process arbitrary input integers/symbols m and n, symbols + and = ... and "effectively"
Stone 1973:7–8 states that there must be, "...a procedure that a robot i.e., can follow in order to determine precisely how to obey the instruction". Stone adds finiteness of the process, and definiteness (having no ambiguity in the instructions) to this definition.
produce, in a "reasonable" time,
[Knuth, loc. cit] outputinteger
y at a specified place and in a specified format.
The concept of algorithm is also used to define the notion of decidability—a notion that is central for explaining how come into being starting from a small set of and rules. In logic, the time that an algorithm requires to complete cannot be measured, as it is not apparently related to the customary physical dimension. From such uncertainties, that characterize ongoing work, stems the unavailability of a definition of algorithm that suits both concrete (in some sense) and abstract usage of the term.
Most algorithms are intended to be Implementation as . However, algorithms are also implemented by other means, such as in a biological neural network (for example, the human brain implementing arithmetic or an insect looking for food), in an electrical circuit, or in a mechanical device.
Formalization
Algorithms are essential to the way computers process data. Many computer programs contain algorithms that detail the specific instructions a computer should perform—in a specific order—to carry out a specified task, such as calculating employees' paychecks or printing students' report cards. Thus, an algorithm can be considered to be any sequence of operations that can be simulated by a
Turing reduction system. Authors who assert this thesis include Minsky (1967), Savage (1987), and Gurevich (2000):
Turing machines can define computational processes that do not terminate. The informal definitions of algorithms generally require that the algorithm always terminates. This requirement renders the task of deciding whether a formal procedure is an algorithm impossible in the general case—due to a major theorem of computability theory known as the
halting problem.
Typically, when an algorithm is associated with processing information, data can be read from an input source, written to an output device and stored for further processing. Stored data are regarded as part of the internal state of the entity performing the algorithm. In practice, the state is stored in one or more data structures.
For some of these computational processes, the algorithm must be rigorously defined: and specified in the way it applies in all possible circumstances that could arise. This means that any conditional steps must be systematically dealt with, case by case; the criteria for each case must be clear (and computable).
Because an algorithm is a precise list of precise steps, the order of computation is always crucial to the functioning of the algorithm. Instructions are usually assumed to be listed explicitly, and are described as starting "from the top" and going "down to the bottom"—an idea that is described more formally by control flow.
So far, the discussion on the formalization of an algorithm has assumed the premises of imperative programming. This is the most common conception—one which attempts to describe a task in discrete, "mechanical" means. Unique to this conception of formalized algorithms is the assignment operation, which sets the value of a variable. It derives from the intuition of "memory" as a scratchpad. An example of such an assignment can be found below.
For some alternate conceptions of what constitutes an algorithm, see functional programming and logic programming.
Expressing algorithms
Algorithms can be expressed in many kinds of notation, including natural languages,
pseudocode,
,
DRAKON, programming languages or
control tables (processed by interpreters). Natural language expressions of algorithms tend to be verbose and ambiguous, and are rarely used for complex or technical algorithms. Pseudocode, flowcharts,
DRAKON and control tables are structured ways to express algorithms that avoid many of the ambiguities common in the statements based on natural language. Programming languages are primarily intended for expressing algorithms in a form that can be executed by a computer, but are also often used as a way to define or document algorithms.
There is a wide variety of representations possible and one can express a given Turing machine program as a sequence of machine tables (see finitestate machine, state transition table and control table for more), as flowcharts and DRAKON (see state diagram for more), or as a form of rudimentary machine code or assembly code called "sets of quadruples" (see Turing machine for more).
Representations of algorithms can be classed into three accepted levels of Turing machine description, as follows:[Sipser 2006:157]
 1 Highlevel description
 "...prose to describe an algorithm, ignoring the implementation details. At this level, we do not need to mention how the machine manages its tape or head."
 2 Implementation description
 "...prose used to define the way the Turing machine uses its head and the way that it stores data on its tape. At this level, we do not give details of states or transition function."
 3 Formal description
 Most detailed, "lowest level", gives the Turing machine's "state table".
For an example of the simple algorithm "Add m+n" described in all three levels, see Examples.
Design
Algorithm design refers to a method or a mathematical process for problemsolving and engineering algorithms. The design of algorithms is part of many solution theories, such as divideandconquer or dynamic programming within operation research. Techniques for designing and implementing algorithm designs are also called algorithm design patterns,
with examples including the template method pattern and the decorator pattern.
One of the most important aspects of algorithm design is resource (runtime, memory usage) efficiency; the big O notation is used to describe e.g. an algorithm's runtime growth as the size of its input increases.
Typical steps in the development of algorithms:

Problem definition

Development of a model

Specification of the algorithm

Designing an algorithm

Checking the correctness of the algorithm

Analysis of algorithm

Implementation of algorithm

Program testing

Documentation preparation
Computer algorithms
"Elegant" (compact) programs, "good" (fast) programs : The notion of "simplicity and elegance" appears informally in
Donald Knuth and precisely in
Gregory Chaitin:
 Knuth: " ... we want good algorithms in some loosely defined aesthetic sense. One criterion ... is the length of time taken to perform the algorithm .... Other criteria are adaptability of the algorithm to computers, its simplicity, and elegance, etc."
[Knuth 1973:7]
 Chaitin: " ... a program is 'elegant,' by which I mean that it's the smallest possible program for producing the output that it does"
[Chaitin 2005:32]
Chaitin prefaces his definition with: "I'll show you can't prove that a program is 'elegant—such a proof would solve the Halting problem (ibid).
Algorithm versus function computable by an algorithm: For a given function multiple algorithms may exist. This is true, even without expanding the available instruction set available to the programmer. Rogers observes that "It is ... important to distinguish between the notion of algorithm, i.e. procedure and the notion of function computable by algorithm, i.e. mapping yielded by procedure. The same function may have several different algorithms".[Rogers 1987:1–2]
Unfortunately, there may be a tradeoff between goodness (speed) and elegance (compactness)—an elegant program may take more steps to complete a computation than one less elegant. An example that uses Euclid's algorithm appears below.
Computers (and computors), models of computation: A computer (or human "computer"[In his essay "Calculations by Man and Machine: Conceptual Analysis" Seig 2002:390 credits this distinction to Robin Gandy, cf Wilfred Seig, et al., 2002 Reflections on the foundations of mathematics: Essays in honor of Solomon Feferman, Association for Symbolic Logic, A.K. Peters Ltd, Natick, MA.]) is a restricted type of machine, a "discrete deterministic mechanical device"[cf Gandy 1980:126, Robin Gandy Church's Thesis and Principles for Mechanisms appearing on pp. 123–148 in Jon Barwise et al. 1980 The Kleene Symposium, NorthHolland Publishing Company.] that blindly follows its instructions.[A "robot": "A computer is a robot that performs any task that can be described as a sequence of instructions." cf Stone 1972:3] Melzak's and Lambek's primitive models[Lambek's "abacus" is a "countably infinite number of locations (holes, wires, etc.) together with an unlimited supply of counters (pebbles, beads, etc.). The locations are distinguishable, the counters are not". The holes have unlimited capacity, and standing by is an agent who understands and is able to carry out the list of instructions" (Lambek 1961:295). Lambek references Melzak who defines his Qmachine as "an indefinitely large number of locations ... an indefinitely large supply of counters distributed among these locations, a program, and an operator whose sole purpose is to carry out the program" (Melzak 1961:283). BBJ (loc. cit.) add the stipulation that the holes are "capable of holding any number of stones" (p. 46). Both Melzak and Lambek appear in The Canadian Mathematical Bulletin, vol. 4, no. 3, September 1961.] reduced this notion to four elements: (i) discrete, distinguishable locations, (ii) discrete, indistinguishable counters[If no confusion results, the word "counters" can be dropped, and a location can be said to contain a single "number".] (iii) an agent, and (iv) a list of instructions that are effective relative to the capability of the agent.["We say that an instruction is effective if there is a procedure that the robot can follow in order to determine precisely how to obey the instruction." (Stone 1972:6)]
Minsky describes a more congenial variation of Lambek's "abacus" model in his "Very Simple Bases for Computability".[cf Minsky 1967: Chapter 11 "Computer models" and Chapter 14 "Very Simple Bases for Computability" pp. 255–281, in particular,] Minsky machine proceeds sequentially through its five (or six, depending on how one counts) instructions unless either a conditional IFTHEN GOTO or an unconditional GOTO changes program flow out of sequence. Besides HALT, Minsky's machine includes three assignment (replacement, substitution)[cf Knuth 1973:3.] operations: ZERO (e.g. the contents of location replaced by 0: L ← 0), SUCCESSOR (e.g. L ← L+1), and DECREMENT (e.g. L ← L − 1).[But always preceded by IFTHEN to avoid improper subtraction.] Rarely must a programmer write "code" with such a limited instruction set. But Minsky shows (as do Melzak and Lambek) that his machine is Turing complete with only four general types of instructions: conditional GOTO, unconditional GOTO, assignment/replacement/substitution, and HALT. However, a few different assignment instructions (e.g. DECREMENT, INCREMENT, and ZERO/CLEAR/EMPTY for a Minsky machine) are also required for Turingcompleteness; their exact specification is somewhat up to the designer. The unconditional GOTO is convenient; it can be constructed by initializing a dedicated location to zero e.g. the instruction " Z ← 0 "; thereafter the instruction IF Z=0 THEN GOTO xxx is unconditional.
Simulation of an algorithm: computer (computor) language: Knuth advises the reader that "the best way to learn an algorithm is to try it . . . immediately take pen and paper and work through an example".[Knuth 1973:4] But what about a simulation or execution of the real thing? The programmer must translate the algorithm into a language that the simulator/computer/computor can effectively execute. Stone gives an example of this: when computing the roots of a quadratic equation the computer must know how to take a square root. If they don't, then the algorithm, to be effective, must provide a set of rules for extracting a square root.[Stone 1972:5. Methods for extracting roots are not trivial: see Methods of computing square roots.]
This means that the programmer must know a "language" that is effective relative to the target computing agent (computer/computor).
But what model should be used for the simulation? Van Emde Boas observes "even if we base complexity theory on abstract instead of concrete machines, the arbitrariness of the choice of a model remains. It is at this point that the notion of simulation enters".
When speed is being measured, the instruction set matters. For example, the subprogram in Euclid's algorithm to compute the remainder would execute much faster if the programmer had a "modulus" instruction available rather than just subtraction (or worse: just Minsky's "decrement").
Structured programming, canonical structures: Per the Church–Turing thesis, any algorithm can be computed by a model known to be Turing complete, and per Minsky's demonstrations, Turing completeness requires only four instruction types—conditional GOTO, unconditional GOTO, assignment, HALT. Kemeny and Kurtz observe that, while "undisciplined" use of unconditional GOTOs and conditional IFTHEN GOTOs can result in "spaghetti code", a programmer can write structured programs using only these instructions; on the other hand "it is also possible, and not too hard, to write badly structured programs in a structured language".[John G. Kemeny and Thomas E. Kurtz 1985 Back to Basic: The History, Corruption, and Future of the Language, AddisonWesley Publishing Company, Inc. Reading, MA, .] Tausworthe augments the three BöhmJacopini canonical structures:[Tausworthe 1977:101] SEQUENCE, IFTHENELSE, and WHILEDO, with two more: DOWHILE and CASE.[Tausworthe 1977:142] An additional benefit of a structured program is that it lends itself to proofs of correctness using mathematical induction.[Knuth 1973 section 1.2.1, expanded by Tausworthe 1977 at pages 100ff and Chapter 9.1]
Canonical flowchart symbols[cf Tausworthe 1977]: The graphical aide called a flowchart offers a way to describe and document an algorithm (and a computer program corresponding to it). Like the program flow of a Minsky machine, a flowchart always starts at the top of a page and proceeds down. Its primary symbols are only four: the directed arrow showing program flow, the rectangle (SEQUENCE, GOTO), the diamond (IFTHENELSE), and the dot (ORtie). The Böhm–Jacopini canonical structures are made of these primitive shapes. Substructures can "nest" in rectangles, but only if a single exit occurs from the superstructure. The symbols and their use to build the canonical structures are shown in the diagram.
Examples
Algorithm example
One of the simplest algorithms is to find the largest number in a list of numbers of random order. Finding the solution requires looking at every number in the list. From this follows a simple algorithm, which can be stated in a highlevel description in English prose, as:
Highlevel description:

If there are no numbers in the set, then there is no highest number.

Assume the first number in the set is the largest number in the set.

For each remaining number in the set: if this number is larger than the current largest number, consider this number to be the largest number in the set.

When there are no numbers left in the set to iterate over, consider the current largest number to be the largest number of the set.
(Quasi)formal description:
Written in prose but much closer to the highlevel language of a computer program, the following is the more formal coding of the algorithm in pseudocode or pidgin code:
Input: A list of numbers ''L''.
Output: The largest number in the list ''L''.
'''if''' ''L.size'' = 0 '''return''' null
''largest'' ← ''L''[0]
'''for each''' ''item'' '''in''' ''L'', '''do'''
'''if''' ''item'' > ''largest'', '''then'''
''largest'' ← ''item''
'''return''' ''largest''
Euclid's algorithm
In
mathematics, the Euclidean algorithm or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a
remainder. It is named after the ancient Greek
mathematician Euclid, who first described it in his
Elements ().
[Heath 1908:300; Hawking's Dover 2005 edition derives from Heath.] It is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other numbertheoretic and cryptographic calculations.
Euclid poses the problem thus: "Given two numbers not prime to one another, to find their greatest common measure". He defines "A number to a multitude composed of units": a counting number, a positive integer not including zero. To "measure" is to place a shorter measuring length s successively ( q times) along longer length l until the remaining portion r is less than the shorter length s.[" 'Let CD, measuring BF, leave FA less than itself.' This is a neat abbreviation for saying, measure along BA successive lengths equal to CD until a point F is reached such that the length FA remaining is less than CD; in other words, let BF be the largest exact multiple of CD contained in BA" (Heath 1908:297)] In modern words, remainder r = l − q× s, q being the quotient, or remainder r is the "modulus", the integerfractional part left over after the division.[For modern treatments using division in the algorithm, see Hardy and Wright 1979:180, Knuth 1973:2 (Volume 1), plus more discussion of Euclid's algorithm in Knuth 1969:293–297 (Volume 2).]
For Euclid's method to succeed, the starting lengths must satisfy two requirements: (i) the lengths must not be zero, AND (ii) the subtraction must be "proper"; i.e., a test must guarantee that the smaller of the two numbers is subtracted from the larger (or the two can be equal so their subtraction yields zero).
Euclid's original proof adds a third requirement: the two lengths must not be prime to one another. Euclid stipulated this so that he could construct a reductio ad absurdum proof that the two numbers' common measure is in fact the greatest.[Euclid covers this question in his Proposition 1.] While Nicomachus' algorithm is the same as Euclid's, when the numbers are prime to one another, it yields the number "1" for their common measure. So, to be precise, the following is really Nicomachus' algorithm.
[[File:Euclidsalgorithmexample1599650.gif350pxthumbrightA graphical expression of Euclid's algorithm to find the greatest common divisor for 1599 and 650
1599 = 650×2 + 299
650 = 299×2 + 52
299 = 52×5 + 39
52 = 39×1 + 13
39 = 13×3 + 0]]
Computer language for Euclid's algorithm
Only a few instruction
types are required to execute Euclid's algorithm—some logical tests (conditional GOTO), unconditional GOTO, assignment (replacement), and subtraction.

A location is symbolized by upper case letter(s), e.g. S, A, etc.

The varying quantity (number) in a location is written in lower case letter(s) and (usually) associated with the location's name. For example, location L at the start might contain the number l = 3009.
An inelegant program for Euclid's algorithm
The following algorithm is framed as Knuth's fourstep version of Euclid's and Nicomachus', but, rather than using division to find the remainder, it uses successive subtractions of the shorter length
s from the remaining length
r until
r is less than
s. The highlevel description, shown in boldface, is adapted from Knuth 1973:2–4:
INPUT:
[Into two locations L and S put the numbers ''l'' and ''s'' that represent the two lengths]:
INPUT L, S
[Initialize R: make the remaining length ''r'' equal to the starting/initial/input length ''l'']:
R ← L
E0: Ensure
[Ensure the smaller of the two numbers is in S and the larger in R]:
IF R > S THEN
the contents of L is the larger number so skip over the exchangesteps 4, 5 and 6:
GOTO step 7
ELSE
swap the contents of R and S.
L ← R (this first step is redundant, but is useful for later discussion).
R ← S
S ← L
E1: Find: Until the remaining length r in R is less than the shorter length s in S, repeatedly subtract the measuring number s in S from the remaining length r in R.
IF S > R THEN
done measuring so
GOTO 10
ELSE
measure again,
R ← R − S
[Remainderloop]:
GOTO 7.
E2: Is: EITHER (i) the last measure was exact, the remainder in R is zero, and the program can halt, OR (ii) the algorithm must continue: the last measure left a remainder in R less than measuring number in S.
IF R = 0 THEN
done so
GOTO step 15
ELSE
CONTINUE TO step 11,
E3: Interchange: The nut of Euclid's algorithm. Use remainder r to measure what was previously smaller number s; L serves as a temporary location.
L ← R
R ← S
S ← L
[Repeat the measuring process]:
GOTO 7
OUTPUT:
[Done. S contains the greatest common divisor]:
PRINT S
DONE:
HALT, END, STOP.
An elegant program for Euclid's algorithm
The flowchart of "Elegant" can be found at the top of this article. In the (unstructured) Basic language, the steps are numbered, and the instruction LET [] = [] is the assignment instruction symbolized by ←.
5 REM Euclid's algorithm for greatest common divisor
6 PRINT "Type two integers greater than 0"
10 INPUT A,B
20 IF B=0 THEN GOTO 80
30 IF A > B THEN GOTO 60
40 LET B=BA
50 GOTO 20
60 LET A=AB
70 GOTO 20
80 PRINT A
90 END
How "Elegant" works: In place of an outer "Euclid loop", "Elegant" shifts back and forth between two "coloops", an A > B loop that computes A ← A − B, and a B ≤ A loop that computes B ← B − A. This works because, when at last the minuend M is less than or equal to the subtrahend S (Difference = Minuend − Subtrahend), the minuend can become
s (the new measuring length) and the subtrahend can become the new
r (the length to be measured); in other words the "sense" of the subtraction reverses.
The following version can be used with programming languages from the Cfamily:
// Euclid's algorithm for greatest common divisor
int euclidAlgorithm (int A, int B) {
A = abs(A);
B = abs(B);
while (B != 0) {
while (A > B) {
A = AB;
}
B = BA;
}
return A;
}
Testing the Euclid algorithms
Does an algorithm do what its author wants it to do? A few test cases usually give some confidence in the core functionality. But tests are not enough. For test cases, one source
uses 3009 and 884. Knuth suggested 40902, 24140. Another interesting case is the two
relatively prime numbers 14157 and 5950.
But "exceptional cases"[While this notion is in widespread use, it cannot be defined precisely.] must be identified and tested. Will "Inelegant" perform properly when R > S, S > R, R = S? Ditto for "Elegant": B > A, A > B, A = B? (Yes to all). What happens when one number is zero, both numbers are zero? ("Inelegant" computes forever in all cases; "Elegant" computes forever when A = 0.) What happens if negative numbers are entered? Fractional numbers? If the input numbers, i.e. the domain of the function computed by the algorithm/program, is to include only positive integers including zero, then the failures at zero indicate that the algorithm (and the program that instantiates it) is a partial function rather than a total function. A notable failure due to exceptions is the Ariane 5 Flight 501 rocket failure (June 4, 1996).
Proof of program correctness by use of mathematical induction: Knuth demonstrates the application of mathematical induction to an "extended" version of Euclid's algorithm, and he proposes "a general method applicable to proving the validity of any algorithm".[Knuth 1973:13–18. He credits "the formulation of algorithmproving in terms of assertions and induction" to R W. Floyd, Peter Naur, C.A.R. Hoare, H.H. Goldstine and J. von Neumann. Tausworth 1977 borrows Knuth's Euclid example and extends Knuth's method in section 9.1 Formal Proofs (pp. 288–298).] Tausworthe proposes that a measure of the complexity of a program be the length of its correctness proof.[Tausworthe 1997:294]
Measuring and improving the Euclid algorithms
Elegance (compactness) versus goodness (speed): With only six core instructions, "Elegant" is the clear winner, compared to "Inelegant" at thirteen instructions. However, "Inelegant" is
faster (it arrives at HALT in fewer steps). Algorithm analysis
[cf Knuth 1973:7 (Vol. I), and his moredetailed analyses on pp. 1969:294–313 (Vol II).] indicates why this is the case: "Elegant" does
two conditional tests in every subtraction loop, whereas "Inelegant" only does one. As the algorithm (usually) requires many loopthroughs,
on average much time is wasted doing a "B = 0?" test that is needed only after the remainder is computed.
Can the algorithms be improved?: Once the programmer judges a program "fit" and "effective"—that is, it computes the function intended by its author—then the question becomes, can it be improved?
The compactness of "Inelegant" can be improved by the elimination of five steps. But Chaitin proved that compacting an algorithm cannot be automated by a generalized algorithm;[Breakdown occurs when an algorithm tries to compact itself. Success would solve the Halting problem.] rather, it can only be done ; i.e., by exhaustive search (examples to be found at Busy beaver), trial and error, cleverness, insight, application of inductive reasoning, etc. Observe that steps 4, 5 and 6 are repeated in steps 11, 12 and 13. Comparison with "Elegant" provides a hint that these steps, together with steps 2 and 3, can be eliminated. This reduces the number of core instructions from thirteen to eight, which makes it "more elegant" than "Elegant", at nine steps.
The speed of "Elegant" can be improved by moving the "B=0?" test outside of the two subtraction loops. This change calls for the addition of three instructions (B = 0?, A = 0?, GOTO). Now "Elegant" computes the examplenumbers faster; whether this is always the case for any given A, B, and R, S would require a detailed analysis.
Algorithmic analysis
It is frequently important to know how much of a particular resource (such as time or storage) is theoretically required for a given algorithm. Methods have been developed for the analysis of algorithms to obtain such quantitative answers (estimates); for example, an algorithm which adds up the elements of a list of
n numbers would have a time requirement of
O(n), using big O notation. At all times the algorithm only needs to remember two values: the sum of all the elements so far, and its current position in the input list. Therefore, it is said to have a space requirement of
O(1), if the space required to store the input numbers is not counted, or
O(n) if it is counted.
Different algorithms may complete the same task with a different set of instructions in less or more time, space, or 'effort' than others. For example, a binary search algorithm (with cost O(log n)) outperforms a sequential search (cost O(n) ) when used for lookup table on sorted lists or arrays.
Formal versus empirical
The analysis, and study of algorithms is a discipline of
computer science, and is often practiced abstractly without the use of a specific programming language or implementation. In this sense, algorithm analysis resembles other mathematical disciplines in that it focuses on the underlying properties of the algorithm and not on the specifics of any particular implementation. Usually
pseudocode is used for analysis as it is the simplest and most general representation. However, ultimately, most algorithms are usually implemented on particular hardware/software platforms and their algorithmic efficiency is eventually put to the test using real code. For the solution of a "one off" problem, the efficiency of a particular algorithm may not have significant consequences (unless n is extremely large) but for algorithms designed for fast interactive, commercial or long life scientific usage it may be critical. Scaling from small n to large n frequently exposes inefficient algorithms that are otherwise benign.
Empirical testing is useful because it may uncover unexpected interactions that affect performance. Benchmarks may be used to compare before/after potential improvements to an algorithm after program optimization.
Empirical tests cannot replace formal analysis, though, and are not trivial to perform in a fair manner.
Execution efficiency
To illustrate the potential improvements possible even in wellestablished algorithms, a recent significant innovation, relating to FFT algorithms (used heavily in the field of image processing), can decrease processing time up to 1,000 times for applications like medical imaging.
In general, speed improvements depend on special properties of the problem, which are very common in practical applications.
[Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price, " ACMSIAM Symposium On Discrete Algorithms (SODA) , Kyoto, January 2012. See also the sFFT Web Page .] Speedups of this magnitude enable computing devices that make extensive use of image processing (like digital cameras and medical equipment) to consume less power.
Classification
There are various ways to classify algorithms, each with its own merits.
By implementation
One way to classify algorithms is by implementation means.

int gcd(int A, int B) {
if (B == 0)
return A;
else if (A > B)
return gcd(AB,B);
else
return gcd(A,BA);
}

Recursive C implementation of Euclid's algorithm from the above flowchart 
 Recursion
 A recursive algorithm is one that invokes (makes reference to) itself repeatedly until a certain condition (also known as termination condition) matches, which is a method common to functional programming. Iteration algorithms use repetitive constructs like Program loops and sometimes additional data structures like stacks to solve the given problems. Some problems are naturally suited for one implementation or the other. For example, towers of Hanoi is well understood using recursive implementation. Every recursive version has an equivalent (but possibly more or less complex) iterative version, and vice versa.
 Logical
 An algorithm may be viewed as controlled logical deduction. This notion may be expressed as: Algorithm = logic + control.
[Kowalski 1979] The logic component expresses the axioms that may be used in the computation and the control component determines the way in which deduction is applied to the axioms. This is the basis for the logic programming paradigm. In pure logic programming languages, the control component is fixed and algorithms are specified by supplying only the logic component. The appeal of this approach is the elegant semantics: a change in the axioms produces a welldefined change in the algorithm.
 Serial, parallel or distributed
 Algorithms are usually discussed with the assumption that computers execute one instruction of an algorithm at a time. Those computers are sometimes called serial computers. An for such an environment is called a serial algorithm, as opposed to parallel algorithms or distributed algorithms. Parallel algorithms are algorithms that take advantage of computer architectures where multiple processors can work on a problem at the same time. Distributed algorithms are algorithms that use multiple machines connected with a computer network. Parallel and distributed algorithms divide the problem into more symmetrical or asymmetrical subproblems and collect the results back together. For example, a CPU would be an example of a parallel algorithm. The resource consumption in such algorithms is not only processor cycles on each processor but also the communication overhead between the processors. Some sorting algorithms can be parallelized efficiently, but their communication overhead is expensive. Iterative algorithms are generally parallelizable, but some problems have no parallel algorithms and are called inherently serial problems.
 Deterministic or nondeterministic
 Deterministic algorithms solve the problem with exact decision at every step of the algorithm whereas nondeterministic algorithms solve problems via guessing although typical guesses are made more accurate through the use of heuristics.
 Exact or approximate
 While many algorithms reach an exact solution, approximation algorithms seek an approximation that is closer to the true solution. The approximation can be reached by either using a deterministic or a random strategy. Such algorithms have practical value for many hard problems. One of the examples of an approximate algorithm is the Knapsack problem, where there is a set of given items. Its goal is to pack the knapsack to get the maximum total value. Each item has some weight and some value. Total weight that can be carried is no more than some fixed number X. So, the solution must consider weights of items as well as their value.
 Quantum algorithm
 They run on a realistic model of quantum computation. The term is usually used for those algorithms which seem inherently quantum, or use some essential feature of Quantum computing such as quantum superposition or quantum entanglement.
By design paradigm
Another way of classifying algorithms is by their design methodology or paradigm. There is a certain number of paradigms, each different from the other. Furthermore, each of these categories includes many different types of algorithms. Some common paradigms are:
 Bruteforce or exhaustive search
 Brute force is a method of problemsolving that involves systematically trying every possible option until the optimal solution is found. This approach can be very time consuming, as it requires going through every possible combination of variables. However, it is often used when other methods are not available or too complex. Brute force can be used to solve a variety of problems, including finding the shortest path between two points and cracking passwords.
 Divide and conquer
 A divideandconquer algorithm repeatedly reduces an instance of a problem to one or more smaller instances of the same problem (usually recursion) until the instances are small enough to solve easily. One such example of divide and conquer is mergesort. Sorting can be done on each segment of data after dividing data into segments and sorting of entire data can be obtained in the conquer phase by merging the segments. A simpler variant of divide and conquer is called a decreaseandconquer algorithm, which solves an identical subproblem and uses the solution of this subproblem to solve the bigger problem. Divide and conquer divides the problem into multiple subproblems and so the conquer stage is more complex than decrease and conquer algorithms. An example of a decrease and conquer algorithm is the binary search algorithm.
 Search and enumeration
 Many problems (such as playing Chess) can be modeled as problems on graph theory. A graph exploration algorithm specifies rules for moving around a graph and is useful for such problems. This category also includes , branch and bound enumeration and backtracking.
 Randomized algorithm
 Such algorithms make some choices randomly (or pseudorandomly). They can be very useful in finding approximate solutions for problems where finding exact solutions can be impractical (see heuristic method below). For some of these problems, it is known that the fastest approximations must involve some .
[For instance, the volume of a convex polytope (described using a membership oracle) can be approximated to high accuracy by a randomized polynomial time algorithm, but not by a deterministic one: see .] Whether randomized algorithms with polynomial time complexity can be the fastest algorithms for some problems is an open question known as the P versus NP problem. There are two large classes of such algorithms:

Monte Carlo algorithms return a correct answer with highprobability. E.g. RP is the subclass of these that run in polynomial time.

Las Vegas algorithms always return the correct answer, but their running time is only probabilistically bound, e.g. ZPP.
 Reduction of complexity
 This technique involves solving a difficult problem by transforming it into a betterknown problem for which we have (hopefully) asymptotically optimal algorithms. The goal is to find a reducing algorithm whose complexity is not dominated by the resulting reduced algorithm's. For example, one selection algorithm for finding the median in an unsorted list involves first sorting the list (the expensive portion) and then pulling out the middle element in the sorted list (the cheap portion). This technique is also known as transform and conquer.
 Back tracking
 In this approach, multiple solutions are built incrementally and abandoned when it is determined that they cannot lead to a valid full solution.
Optimization problems
For optimization problems there is a more specific classification of algorithms; an algorithm for such problems may fall into one or more of the general categories described above as well as into one of the following:
 Linear programming
 When searching for optimal solutions to a linear function bound to linear equality and inequality constraints, the constraints of the problem can be used directly in producing the optimal solutions. There are algorithms that can solve any problem in this category, such as the popular simplex algorithm.
George B. Dantzig and Mukund N. Thapa. 2003.
Linear Programming 2: Theory and Extensions. SpringerVerlag. Problems that can be solved with linear programming include the maximum flow problem for directed graphs. If a problem additionally requires that one or more of the unknowns must be an
integer then it is classified in integer programming. A linear programming algorithm can solve such a problem if it can be proved that all restrictions for integer values are superficial, i.e., the solutions satisfy these restrictions anyway. In the general case, a specialized algorithm or an algorithm that finds approximate solutions is used, depending on the difficulty of the problem.
 Dynamic programming
 When a problem shows optimal substructures—meaning the optimal solution to a problem can be constructed from optimal solutions to subproblems—and overlapping subproblems, meaning the same subproblems are used to solve many different problem instances, a quicker approach called dynamic programming avoids recomputing solutions that have already been computed. For example, Floyd–Warshall algorithm, the shortest path to a goal from a vertex in a weighted graph can be found by using the shortest path to the goal from all adjacent vertices. Dynamic programming and memoization go together. The main difference between dynamic programming and divide and conquer is that subproblems are more or less independent in divide and conquer, whereas subproblems overlap in dynamic programming. The difference between dynamic programming and straightforward recursion is in caching or memoization of recursive calls. When subproblems are independent and there is no repetition, memoization does not help; hence dynamic programming is not a solution for all complex problems. By using memoization or maintaining a table of subproblems already solved, dynamic programming reduces the exponential nature of many problems to polynomial complexity.
 The greedy method
 A greedy algorithm is similar to a dynamic programming algorithm in that it works by examining substructures, in this case not of the problem but of a given solution. Such algorithms start with some solution, which may be given or have been constructed in some way, and improve it by making small modifications. For some problems they can find the optimal solution while for others they stop at local optimum, that is, at solutions that cannot be improved by the algorithm but are not optimum. The most popular use of greedy algorithms is for finding the minimal spanning tree where finding the optimal solution is possible with this method. Huffman coding, Kruskal, Prim, Sollin are greedy algorithms that can solve this optimization problem.
 The heuristic method
 In optimization problems, heuristic algorithms can be used to find a solution close to the optimal solution in cases where finding the optimal solution is impractical. These algorithms work by getting closer and closer to the optimal solution as they progress. In principle, if run for an infinite amount of time, they will find the optimal solution. Their merit is that they can find a solution very close to the optimal solution in a relatively short time. Such algorithms include local search, tabu search, simulated annealing, and genetic algorithms. Some of them, like simulated annealing, are nondeterministic algorithms while others, like tabu search, are deterministic. When a bound on the error of the nonoptimal solution is known, the algorithm is further categorized as an approximation algorithm.
By field of study
Every field of science has its own problems and needs efficient algorithms. Related problems in one field are often studied together. Some example classes are
, sorting algorithms,
, numerical algorithms,
graph theory,
, computational geometric algorithms,
combinatorial, medical algorithms,
machine learning,
cryptography,
data compression algorithms and
parsing.
Fields tend to overlap with each other, and algorithm advances in one field may improve those of other, sometimes completely unrelated, fields. For example, dynamic programming was invented for optimization of resource consumption in industry but is now used in solving a broad range of problems in many fields.
By complexity
Algorithms can be classified by the amount of time they need to complete compared to their input size:

Constant time: if the time needed by the algorithm is the same, regardless of the input size. E.g. an access to an array element.

Logarithmic time: if the time is a logarithmic function of the input size. E.g. binary search algorithm.

Linear time: if the time is proportional to the input size. E.g. the traverse of a list.

Polynomial time: if the time is a power of the input size. E.g. the bubble sort algorithm has quadratic time complexity.

Exponential time: if the time is an exponential function of the input size. E.g. Bruteforce search.
Some problems may have multiple algorithms of differing complexity, while other problems might have no algorithms or no known efficient algorithms. There are also mappings from some problems to other problems. Owing to this, it was found to be more suitable to classify the problems themselves instead of the algorithms into equivalence classes based on the complexity of the best possible algorithms for them.
Continuous algorithms
The adjective "continuous" when applied to the word "algorithm" can mean:

An algorithm operating on data that represents continuous quantities, even though this data is represented by discrete approximations—such algorithms are studied in numerical analysis; or

An algorithm in the form of a differential equation that operates continuously on the data, running on an analog computer.
Legal issues
Algorithms, by themselves, are not usually patentable. In the United States, a claim consisting solely of simple manipulations of abstract concepts, numbers, or signals does not constitute "processes" (USPTO 2006), and hence algorithms are not patentable (as in Gottschalk v. Benson). However practical applications of algorithms are sometimes patentable. For example, in Diamond v. Diehr, the application of a simple
feedback algorithm to aid in the curing of
synthetic rubber was deemed patentable. The patenting of software is highly controversial, and there are highly criticized patents involving algorithms, especially
data compression algorithms, such as
Unisys' LZW patent.
Additionally, some cryptographic algorithms have export restrictions (see export of cryptography).
History: Development of the notion of "algorithm"
Ancient Near East
The earliest evidence of algorithms is found in the Babylonian mathematics of ancient
Mesopotamia (modern Iraq). A
clay tablet found in
Shuruppak near
Baghdad and dated to circa 2500 BC described the earliest division algorithm.
During the Hammurabi dynasty circa 18001600 BC,
clay tablets described algorithms for computing
.
Algorithms were also used in Babylonian astronomy. Babylonian clay tablets describe and employ algorithmic procedures to compute the time and place of significant astronomical events.
Algorithms for arithmetic are also found in ancient Egyptian mathematics, dating back to the Rhind Mathematical Papyrus circa 1550 BC.[ Algorithms were later used in ancient Hellenistic mathematics. Two examples are the Sieve of Eratosthenes, which was described in the Introduction to Arithmetic by Nicomachus,][ and the Euclidean algorithm, which was first described in Euclid's Elements ().][
]
Discrete and distinguishable symbols
Tallymarks: To keep track of their flocks, their sacks of grain and their money the ancients used tallying: accumulating stones or marks scratched on sticks or making discrete symbols in clay. Through the Babylonian and Egyptian use of marks and symbols, eventually
and the
abacus evolved (Dilson, p. 16–41). Tally marks appear prominently in unary numeral system arithmetic used in
Turing machine and Post–Turing machine computations.
Manipulation of symbols as "place holders" for numbers: algebra
Muhammad ibn Mūsā alKhwārizmī, a Persian mathematician, wrote the
Aljabr in the 9th century. The terms "
algorism" and "algorithm" are derived from the name alKhwārizmī, while the term "
algebra" is derived from the book
Aljabr. In Europe, the word "algorithm" was originally used to refer to the sets of rules and techniques used by AlKhwarizmi to solve algebraic equations, before later being generalized to refer to any set of rules or techniques.
This eventually culminated in Leibniz's notion of the calculus ratiocinator ():
Cryptographic algorithms
The first
cryptographic algorithm for deciphering encrypted code was developed by
AlKindi, a 9thcentury Arab mathematician, in
A Manuscript On Deciphering Cryptographic Messages. He gave the first description of
cryptanalysis by frequency analysis, the earliest
codebreaking algorithm.
Mechanical contrivances with discrete states
The clock: Bolter credits the invention of the weightdriven
clock as "The key invention of", in particular, the
verge escapement[Bolter 1984:24] that provides us with the tick and tock of a mechanical clock. "The accurate automatic machine"
[Bolter 1984:26] led immediately to "mechanical
automata theory" beginning in the 13th century and finally to "computational machines"—the difference engine and analytical engines of
Charles Babbage and Countess
Ada Lovelace, mid19th century.
[Bolter 1984:33–34, 204–206.] Lovelace is credited with the first creation of an algorithm intended for processing on a computer—Babbage's analytical engine, the first device considered a real
Turingcomplete computer instead of just a
calculator—and is sometimes called "history's first programmer" as a result, though a full implementation of Babbage's second device would not be realized until decades after her lifetime.
Logical machines 1870 – ' "logical abacus" and "logical machine": The technical problem was to reduce when presented in a form similar to what is now known as . Jevons (1880) describes first a simple "abacus" of "slips of wood furnished with pins, contrived so that any part or class of the logical combinations can be picked out mechanically ... More recently, however, I have reduced the system to a completely mechanical form, and have thus embodied the whole of the indirect process of inference in what may be called a Logical Machine" His machine came equipped with "certain moveable wooden rods" and "at the foot are 21 keys like those of a piano etc. ...". With this machine he could analyze a "syllogism or any other simple logical argument".[All quotes from W. Stanley Jevons 1880 Elementary Lessons in Logic: Deductive and Inductive, Macmillan and Co., London and New York. Republished as a googlebook; cf Jevons 1880:199–201. Louis Couturat 1914 the Algebra of Logic, The Open Court Publishing Company, Chicago and London. Republished as a googlebook; cf Couturat 1914:75–76 gives a few more details; he compares this to a typewriter as well as a piano. Jevons states that the account is to be found at January 20, 1870 The Proceedings of the Royal Society.]
This machine he displayed in 1870 before the Fellows of the Royal Society.[Jevons 1880:199–200] Another logician John Venn, however, in his 1881 Symbolic Logic, turned a jaundiced eye to this effort: "I have no high estimate myself of the interest or importance of what are sometimes called logical machines ... it does not seem to me that any contrivances at present known or likely to be discovered really deserve the name of logical machines"; see more at Algorithm characterizations. But not to be outdone he too presented "a plan somewhat analogous, I apprehend, to Prof. Jevon's abacus ... And again, corresponding to Prof. Jevons's logical machine, the following contrivance may be described. I prefer to call it merely a logicaldiagram machine ... but I suppose that it could do very completely all that can be rationally expected of any logical machine".[All quotes from John Venn 1881 Symbolic Logic, Macmillan and Co., London. Republished as a googlebook. cf Venn 1881:120–125. The interested reader can find a deeper explanation in those pages.]
Jacquard loom, Hollerith punch cards, telegraphy and telephony – the electromechanical relay: Bell and Newell (1971) indicate that the Jacquard loom (1801), precursor to (punch cards, 1887), and "telephone switching technologies" were the roots of a tree leading to the development of the first computers.[Bell and Newell diagram 1971:39, cf. Davis 2000] By the mid19th century the telegraph, the precursor of the telephone, was in use throughout the world, its discrete and distinguishable encoding of letters as "dots and dashes" a common sound. By the late 19th century the ticker tape () was in use, as was the use of Hollerith cards in the 1890 U.S. census. Then came the teleprinter () with its punchedpaper use of Baudot code on tape.
Telephoneswitching networks of electromechanical relays (invented 1835) was behind the work of George Stibitz (1937), the inventor of the digital adding device. As he worked in Bell Laboratories, he observed the "burdensome' use of mechanical calculators with gears. "He went home one evening in 1937 intending to test his idea... When the tinkering was over, Stibitz had constructed a binary adding device".[* Melina Hill, Valley News Correspondent, A Tinkerer Gets a Place in History, Valley News West Lebanon NH, Thursday, March 31, 1983, p. 13.]
The mathematician Martin Davis observes the particular importance of the electromechanical relay (with its two "binary states" open and closed):
 It was only with the development, beginning in the 1930s, of electromechanical calculators using electrical relays, that machines were built having the scope Babbage had envisioned."
[Davis 2000:14]
Mathematics during the 19th century up to the mid20th century
Symbols and rules: In rapid succession, the mathematics of
George Boole (1847, 1854),
Gottlob Frege (1879), and
Giuseppe Peano (1888–1889) reduced arithmetic to a sequence of symbols manipulated by rules. Peano's
The principles of arithmetic, presented by a new method (1888) was "the first attempt at an axiomatization of mathematics in a symbolic language".
[van Heijenoort 1967:81ff]
But Heijenoort gives Frege (1879) this kudos: Frege's is "perhaps the most important single work ever written in logic. ... in which we see a formula language', that is a lingua characterica, a language written with special symbols, "for pure thought", that is, free from rhetorical embellishments ... constructed from specific symbols that are manipulated according to definite rules".[van Heijenoort's commentary on Frege's Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought in van Heijenoort 1967:1] The work of Frege was further simplified and amplified by Alfred North Whitehead and Bertrand Russell in their Principia Mathematica (1910–1913).
The paradoxes: At the same time a number of disturbing paradoxes appeared in the literature, in particular, the BuraliForti paradox (1897), the Russell paradox (1902–03), and the Richard Paradox.[Dixon 1906, cf. Kleene 1952:36–40] The resultant considerations led to Kurt Gödel's paper (1931)—he specifically cites the paradox of the liar—that completely reduces rules of recursion to numbers.
Effective calculability: In an effort to solve the Entscheidungsproblem defined precisely by Hilbert in 1928, mathematicians first set about to define what was meant by an "effective method" or "effective calculation" or "effective calculability" (i.e., a calculation that would succeed). In rapid succession the following appeared: Alonzo Church, Stephen Kleene and J.B. Rosser's λcalculus[cf. footnote in Alonzo Church 1936a in Davis 1965:90 and 1936b in Davis 1965:110] a finely honed definition of "general recursion" from the work of Gödel acting on suggestions of Jacques Herbrand (cf. Gödel's Princeton lectures of 1934) and subsequent simplifications by Kleene.[Kleene 1935–6 in Davis 1965:237ff, Kleene 1943 in Davis 1965:255ff] Church's proof[Church 1936 in Davis 1965:88ff] that the Entscheidungsproblem was unsolvable, Emil Post's definition of effective calculability as a worker mindlessly following a list of instructions to move left or right through a sequence of rooms and while there either mark or erase a paper or observe the paper and make a yesno decision about the next instruction.[cf. "Finite Combinatory Processes – formulation 1", Post 1936 in Davis 1965:289–290] Alan Turing's proof of that the Entscheidungsproblem was unsolvable by use of his "a automatic machine"[Turing 1936–37 in Davis 1965:116ff]—in effect almost identical to Post's "formulation", J. Barkley Rosser's definition of "effective method" in terms of "a machine".[Rosser 1939 in Davis 1965:226] Kleene's proposal of a precursor to "Church thesis" that he called "Thesis I",[Kleene 1943 in Davis 1965:273–274] and a few years later Kleene's renaming his Thesis "Church's Thesis"[Kleene 1952:300, 317] and proposing "Turing's Thesis".[Kleene 1952:376]
Emil Post (1936) and Alan Turing (1936–37, 1939)
Emil Post (1936) described the actions of a "computer" (human being) as follows:
 "...two concepts are involved: that of a symbol space in which the work leading from problem to answer is to be carried out, and a fixed unalterable set of directions.
His symbol space would be
 "a twoway infinite sequence of spaces or boxes... The problem solver or worker is to move and work in this symbol space, being capable of being in, and operating in but one box at a time.... a box is to admit of but two possible conditions, i.e., being empty or unmarked, and having a single mark in it, say a vertical stroke.
 "One box is to be singled out and called the starting point. ...a specific problem is to be given in symbolic form by a finite number of boxes i.e., being marked with a stroke. Likewise, the answer i.e., is to be given in symbolic form by such a configuration of marked boxes...
 "A set of directions applicable to a general problem sets up a deterministic process when applied to each specific problem. This process terminates only when it comes to the direction of type (C ) i.e.,".
[Turing 1936–37 in Davis 1965:289–290] See more at Post–Turing machine
Alan Turing's work
[Turing 1936 in Davis 1965, Turing 1939 in Davis 1965:160] preceded that of Stibitz (1937); it is unknown whether Stibitz knew of the work of Turing. Turing's biographer believed that Turing's use of a typewriterlike model derived from a youthful interest: "Alan had dreamt of inventing typewriters as a boy; Mrs. Turing had a typewriter, and he could well have begun by asking himself what was meant by calling a typewriter 'mechanical.
[Hodges, p. 96] Given the prevalence at the time of Morse code, telegraphy, ticker tape machines, and teletypewriters, it is quite possible that all were influences on Turing during his youth.
Turing—his model of computation is now called a Turing machine—begins, as did Post, with an analysis of a human computer that he whittles down to a simple set of basic motions and "states of mind". But he continues a step further and creates a machine as a model of computation of numbers.[Turing 1936–37:116]
 "Computing is normally done by writing certain symbols on paper. We may suppose this paper is divided into squares like a child's arithmetic book...I assume then that the computation is carried out on onedimensional paper, i.e., on a tape divided into squares. I shall also suppose that the number of symbols which may be printed is finite...
 "The behavior of the computer at any moment is determined by the symbols which he is observing, and his "state of mind" at that moment. We may suppose that there is a bound B to the number of symbols or squares that the computer can observe at one moment. If he wishes to observe more, he must use successive observations. We will also suppose that the number of states of mind which need be taken into account is finite...
 "Let us imagine that the operations performed by the computer to be split up into 'simple operations' which are so elementary that it is not easy to imagine them further divided."
[Turing 1936–37 in Davis 1965:136]
Turing's reduction yields the following:
 "The simple operations must therefore include:
 :"(a) Changes of the symbol on one of the observed squares
 :"(b) Changes of one of the squares observed to another square within L squares of one of the previously observed squares.
"It may be that some of these change necessarily invoke a change of state of mind. The most general single operation must, therefore, be taken to be one of the following:
 :"(A) A possible change (a) of symbol together with a possible change of state of mind.
 :"(B) A possible change (b) of observed squares, together with a possible change of state of mind"
 "We may now construct a machine to do the work of this computer."
A few years later, Turing expanded his analysis (thesis, definition) with this forceful expression of it:
 "A function is said to be "effectively calculable" if its values can be found by some purely mechanical process. Though it is fairly easy to get an intuitive grasp of this idea, it is nevertheless desirable to have some more definite, mathematical expressible definition ... he ... We may take this statement literally, understanding by a purely mechanical process one which could be carried out by a machine. It is possible to give a mathematical description, in a certain normal form, of the structures of these machines. The development of these ideas leads to the author's definition of a computable function, and to an identification of computability † with effective calculability...
 :"† We shall use the expression "computable function" to mean a function calculable by a machine, and we let "effectively calculable" refer to the intuitive idea without particular identification with any one of these definitions".
[Turing 1939 in Davis 1965:160]
J. B. Rosser (1939) and S. C. Kleene (1943)
J. Barkley Rosser defined an "effective mathematical method" in the following manner (italicization added):
 Effective method' is used here in the rather special sense of a method each step of which is precisely determined and which is certain to produce the answer in a finite number of steps. With this special meaning, three different precise definitions have been given to date. his. The simplest of these to state (due to Post and Turing) says essentially that an effective method of solving certain sets of problems exists if one can build a machine which will then solve any problem of the set with no human intervention beyond inserting the question and (later) reading the answer. All three definitions are equivalent, so it doesn't matter which one is used. Moreover, the fact that all three are equivalent is a very strong argument for the correctness of any one." (Rosser 1939:225–226)
Rosser's footnote No. 5 references the work of (1) Church and Kleene and their definition of λdefinability, in particular, Church's use of it in his An Unsolvable Problem of Elementary Number Theory (1936); (2) Herbrand and Gödel and their use of recursion, in particular, Gödel's use in his famous paper On Formally Undecidable Propositions of Principia Mathematica and Related Systems I (1931); and (3) Post (1936) and Turing (1936–37) in their mechanismmodels of computation.
Stephen C. Kleene defined as his nowfamous "Thesis I" known as the Church–Turing thesis. But he did this in the following context (boldface in original):
 "12. Algorithmic theories... In setting up a complete algorithmic theory, what we do is to describe a procedure, performable for each set of values of the independent variables, which procedure necessarily terminates and in such manner that from the outcome we can read a definite answer, "yes" or "no," to the question, "is the predicate value true?"" (Kleene 1943:273)
History after 1950
A number of efforts have been directed toward further refinement of the definition of "algorithm", and activity is ongoing because of issues surrounding, in particular, foundations of mathematics (especially the Church–Turing thesis) and philosophy of mind (especially arguments about artificial intelligence). For more, see Algorithm characterizations.
See also

Abstract machine

ALGOL

Algorithm engineering

Algorithm characterizations


Algorithmic composition

Algorithmic entities

Algorithmic synthesis

Algorithmic technique

Algorithmic topology

Garbage in, garbage out

Introduction to Algorithms (textbook)

Government by algorithm

List of algorithms

List of algorithm general topics

List of important publications in theoretical computer science – Algorithms

Regulation of algorithms

Theory of computation

Computability theory

Computational complexity theory

Computational mathematics
Notes
Bibliography

Bell, C. Gordon and Newell, Allen (1971), Computer Structures: Readings and Examples, McGraw–Hill Book Company, New York. .

Includes an excellent bibliography of 56 references.

,

: cf. Chapter 3 Turing machines where they discuss "certain enumerable sets not effectively (mechanically) enumerable".


Campagnolo, M.L., Cris Moore, and Costa, J.F. (2000) An analog characterization of the subrecursive functions. In Proc. of the 4th Conference on Real Numbers and Computers, Odense University, pp. 91–109

Reprinted in The Undecidable, p. 89ff. The first expression of "Church's Thesis". See in particular page 100 ( The Undecidable) where he defines the notion of "effective calculability" in terms of "an algorithm", and he uses the word "terminates", etc.

Reprinted in The Undecidable, p. 110ff. Church shows that the Entscheidungsproblem is unsolvable in about 3 pages of text and 3 pages of footnotes.


Davis gives commentary before each article. Papers of Gödel, Alonzo Church, Alan Turing, Rosser, Kleene, and Emil Post are included; those cited in the article are listed here by author's name.

Davis offers concise biographies of Leibniz, George Boole, Gottlob Frege, Georg Cantor, David Hilbert, Gödel and Turing with von Neumann as the showstealing villain. Very brief bios of JosephMarie Jacquard, Babbage, Ada Lovelace, Claude Shannon, Howard Aiken, etc.


,

Yuri Gurevich, Sequential Abstract State Machines Capture Sequential Algorithms, ACM Transactions on Computational Logic, Vol 1, no 1 (July 2000), pp. 77–111. Includes bibliography of 33 sources.

, 3rd edition 1976?, (pbk.)

, . Cf. Chapter "The Spirit of Truth" for a history leading to, and a discussion of, his proof.

Presented to the American Mathematical Society, September 1935. Reprinted in The Undecidable, p. 237ff. Kleene's definition of "general recursion" (known now as murecursion) was used by Church in his 1935 paper An Unsolvable Problem of Elementary Number Theory that proved the "decision problem" to be "undecidable" (i.e., a negative result).

Reprinted in The Undecidable, p. 255ff. Kleene refined his definition of "general recursion" and proceeded in his chapter "12. Algorithmic theories" to posit "Thesis I" (p. 274); he would later repeat this thesis (in Kleene 1952:300) and name it "Church's Thesis"(Kleene 1952:317) (i.e., the Church thesis).



Kosovsky, N.K. Elements of Mathematical Logic and its Application to the theory of Subrecursive Algorithms, LSU Publ., Leningrad, 1981

A.A. Markov (1954) Theory of algorithms. Translated Imprint Moscow, Academy of Sciences of the USSR, 1954 i.e., Description 444 p. 28 cm. Added t.p. in Russian Translation of Works of the Mathematical Institute, Academy of Sciences of the USSR, v. 42. Original title: Teoriya algerifmov. QA248.M2943

Minsky expands his "...idea of an algorithm – an effective procedure..." in chapter 5.1 Computability, Effective Procedures and Algorithms. Infinite machines.

Reprinted in The Undecidable, pp. 289ff. Post defines a simple algorithmiclike process of a man writing marks or erasing marks and going from box to box and eventually halting, as he follows a list of simple instructions. This is cited by Kleene as one source of his "Thesis I", the socalled Church–Turing thesis.


Reprinted in The Undecidable, p. 223ff. Herein is Rosser's famous definition of "effective method": "...a method each step of which is precisely predetermined and which is certain to produce the answer in a finite number of steps... a machine which will then solve any problem of the set with no human intervention beyond inserting the question and (later) reading the answer" (p. 225–226, The Undecidable)





Cf. in particular the first chapter titled: Algorithms, Turing Machines, and Programs. His succinct informal definition: "...any sequence of instructions that can be obeyed by a robot, is called an algorithm" (p. 4).


. Corrections, ibid, vol. 43(1937) pp. 544–546. Reprinted in The Undecidable, p. 116ff. Turing's famous paper completed as a Master's dissertation while at King's College Cambridge UK.

Reprinted in The Undecidable, pp. 155ff. Turing's paper that defined "the oracle" was his PhD thesis while at Princeton.

United States Patent and Trademark Office (2006), 2106.02 **>Mathematical Algorithms: 2100 Patentability, Manual of Patent Examining Procedure (MPEP). Latest revision August 2006
Further reading
External links
 Algorithm repositories