A tetrapod (; from Ancient Greek τετρα- (tetra-) 'four' and πούς (poús) 'foot') is any vertebrate animal of the clade Tetrapoda (). Tetrapods include all extant and Extinction and , with the latter in turn Evolution into two major clades, the Sauropsida (, including and therefore ) and (extinct pelycosaur, and all extant , including Homo sapiens). Hox gene mutations have resulted in some tetrapods becoming limbless (, , and ) or two-limbed (, , Bipedidae, kiwis, and the extinct moa and ). Nevertheless, they still qualify as tetrapods through their ancestry, and some retain a pair of vestigial Pelvic spur that are remnants of the .
Tetrapods evolved from a group of semiaquatic animals within the Tetrapodomorpha which, in turn, evolved from ancient Sarcopterygii (Sarcopterygii) around in the Middle Devonian period. Early tetrapodomorphs were transitional between lobe-finned fishes and true four-limbed tetrapods, though most still fit the body plan expected of other lobe-finned fishes. The oldest fossils of four-limbed vertebrates (tetrapods in the broad sense of the word) are trackways from the Middle Devonian, and body fossils became common near the end of the Late Devonian, around 370–360 million years ago. These Devonian species all belonged to the tetrapod stem group, meaning that they did not belong to any modern tetrapod group.
Limbs evolved prior to terrestrial locomotion, but by the start of the Carboniferous Period, 360 million years ago, a few stem-tetrapods were experimenting with a semiaquatic lifestyle to exploit food and shelter on land. The first Crown group-tetrapods (those descended from the last common ancestors of extant tetrapods) appeared by the Tournaisian age of the Early Carboniferous.
The specific aquatic ancestors of the tetrapods and the process by which they colonized Earth's land after emerging from water remains unclear. The transition from a body plan for gill-based aquatic respiration and tail-propelled aquatic locomotion to one that enables the animal to survive out of water and move around on land is one of the most profound evolutionary changes known. as PDF Tetrapods have numerous anatomical and physiological features that are distinct from their aquatic fish ancestors. These include distinct head and neck structures for feeding and movements, appendicular skeletons (Shoulder girdle and Pelvis in particular) for weight bearing and locomotion, more versatile for seeing, for hearing, and more efficient heart and for oxygen circulation and exchange outside water.
Stem-tetrapods and "fish-a-pods" were primarily Aquatic animal. Lissamphibia are generally semiaquatic; the first stages of their lives are as waterborne and fish-like with gills known as , and later undergo metamorphosis to grow limbs and lungs and become partly terrestrial and partly aquatic. However, most tetrapod species today are , a group of mostly terrestrial tetrapods that evolved early in the Late Carboniferous. The key amniote innovation is the amnion, which enables the eggs to retain their aqueous contents on land. Some tetrapods, such as and , have lost some or all of their limbs through further speciation and evolution; some only have concealed Vestigiality bones as a remnant of the limbs of their distant ancestors. Others returned to being amphibious or otherwise living partially or fully aquatic lives, the first during the Carboniferous period, while others, such as whales, as recently as the Cenozoic.
Amniotes diverged into two branches: one, Sauropsida, includes the : Lepidosauria (lizards, snakes, and the tuatara), ( and , of which are a subset), , and various other extinct forms. The other branch, Synapsida, include and their extinct relatives.
Amniotes include the only animals apart from insects that further evolved powered flight: the extinct and extant birds and .
Defining tetrapods based on one or two apomorphies can present a problem if these apomorphies were acquired by more than one lineage through convergent evolution. To resolve this potential concern, the apomorphy-based definition is often supported by an equivalent Cladistics definition. Cladistics is a modern branch of taxonomy which classifies organisms through evolutionary relationships, as reconstructed by phylogenetic analyses. A cladistic definition would define a group based on how closely related its constituents are. Tetrapoda is widely considered a Monophyly clade, a group with all of its component taxa sharing a single common ancestor. In this sense, Tetrapoda can also be defined as the "clade of limbed vertebrates", including all vertebrates descended from the first limbed vertebrates.
* Under the apomorphy-based definition used by many paleontologists, tetrapods originate at the orange star ("First vertebrates with tetrapod limb")
* When restricted to the crown group, tetrapods originate at the "last common ancestor of recent tetrapods"
]] A portion of tetrapod workers, led by French paleontologist Michel Laurin, prefer to restrict the definition of tetrapod to the crown group. A crown group is a subset of a category of animal defined by the most recent common ancestor of living representatives. This cladistic approach defines "tetrapods" as the nearest common ancestor of all living amphibians (the lissamphibians) and all living amniotes (reptiles, birds, and mammals), along with all of the descendants of that ancestor. In effect, "tetrapod" is a name reserved solely for animals which lie among living tetrapods, so-called crown tetrapods. This is a Node-based taxon clade, a group with a common ancestry descended from a single "node" (the node being the nearest common ancestor of living species).
Defining tetrapods based on the crown group would exclude many four-limbed vertebrates which would otherwise be defined as tetrapods. Devonian "tetrapods", such as Ichthyostega and Acanthostega, certainly evolved prior to the split between lissamphibians and amniotes, and thus lie outside the crown group. They would instead lie along the Crown group, a subset of animals related to, but not within, the crown group. The stem and crown group together are combined into the total group, given the name Tetrapodomorpha, which refers to all animals closer to living tetrapods than to Dipnoi (), the next closest group of living animals. Many early tetrapodomorphs are clearly fish in ecology and anatomy, but later tetrapodomorphs are much more similar to tetrapods in many regards, such as the presence of limbs and digits.
Laurin's approach to the definition of tetrapods is rooted in the belief that the term has more relevance for Neontology (an informal term used for biologists specializing in living organizms) than paleontologists (who primarily use the apomorphy-based definition). In 1998, he re-established the defunct historical term Stegocephali to replace the apomorphy-based definition of tetrapod used by many authors. Other paleontologists use the term stem-tetrapod to refer to those tetrapod-like vertebrates that are not members of the crown group, including both early limbed "tetrapods" and tetrapodomorph fishes. The term "fishapod" was popularized after the discovery and 2006 publication of Tiktaalik, an advanced tetrapodomorph fish which was closely related to limbed vertebrates and showed many apparently transitional traits.
The two subclades of crown tetrapods are Batrachomorpha and Reptiliomorpha. Batrachomorphs are all animals sharing a more recent common ancestry with living amphibians than with living amniotes (reptiles, birds, and mammals). Reptiliomorphs are all animals sharing a more recent common ancestry with living amniotes than with living amphibians. Gaffney (1979) provided the name Neotetrapoda to the crown group of tetrapods, though few subsequent authors followed this proposal.
The earliest fossils attributed to crown-group tetrapods are footprints from the earliest Carboniferous (Tournaisian) of Australia, which appear to belong to early or potentially even Sauropsida. Prior to the discovery of these prints, the earliest evidence of crown-group tetrapods were Temnospondyli footprints from slightly later in the Tournaisian, with the earliest body fossils being of the temnospondyl Balanerpeton from the Viséan.
| +IUCN global summary estimates for extant tetrapod species as of 2023 | ||||||
| 11,197 | 11,197 | 100% | 1,354 | 12% | ||
| Mammal | 6,631 | 5,980 | 90% | 1,339 | 26% | |
As is the case throughout evolutionary biology today, there is debate over how to properly classify the groups within Tetrapoda. Traditional biological classification sometimes fails to recognize evolutionary transitions between older groups and descendant groups with markedly different characteristics. For example, the birds, which evolved from the dinosaurs, are defined as a separate group from them, because they represent a distinct new type of physical form and functionality. In phylogenetic nomenclature, in contrast, the newer group is always included in the old. For this school of taxonomy, dinosaurs and birds are not groups in contrast to each other, but rather birds are a sub-type of dinosaurs.
This classification is the one most commonly encountered in school textbooks and popular works. While orderly and easy to use, it has come under critique from cladistics. The earliest tetrapods are grouped under class Amphibia, although several of the groups are more closely related to than to Lissamphibia. Traditionally, birds are not considered a type of reptile, but crocodiles are more closely related to birds than they are to other reptiles, such as lizards. Birds themselves are thought to be descendants of Theropoda. Basal non-mammalian ("mammal-like reptiles") traditionally also sort under class Reptilia as a separate subclass, but they are more closely related to mammals than to living reptiles. Considerations like these have led some authors to argue for a new classification based purely on phylogeny, disregarding the anatomy and physiology.
The first tetrapods probably evolved in the Emsian stage of the Early Devonian from Tetrapodomorph fish living in shallow water environments.
The very earliest tetrapods would have been animals similar to Acanthostega, with legs and lungs as well as gills, but still primarily aquatic and unsuited to life on land.
The earliest tetrapods inhabited saltwater, brackish-water, and freshwater environments, as well as environments of highly variable salinity. These traits were shared with many early lobed-finned fishes. As early tetrapods are found on two Devonian continents, Laurussia (Euramerica) and Gondwana, as well as the island of North China, it is widely supposed that early tetrapods were capable of swimming across the shallow (and relatively narrow) continental-shelf seas that separated these landmasses.
Since the early 20th century, several families of tetrapodomorph fishes have been proposed as the nearest relatives of tetrapods, among them the (notably Sauripterus), the Osteolepidae, the tristichopterids (notably Eusthenopteron), and more recently the (also known as Panderichthyida) notably the genus Tiktaalik.
A notable feature of Tiktaalik is the absence of bones covering the gills. These bones would otherwise connect the shoulder girdle with skull, making the shoulder girdle part of the skull. With the loss of the gill-covering bones, the shoulder girdle is separated from the skull, connected to the torso by muscle and other soft-tissue connections. The result is the appearance of the neck. This feature appears only in tetrapods and Tiktaalik, not other tetrapodomorph fishes. Tiktaalik also had a pattern of bones in the skull roof (upper half of the skull) that is similar to the end-Devonian tetrapod Ichthyostega. The two also shared a semi-rigid ribcage of overlapping ribs, which may have substituted for a rigid spine. In conjunction with robust forelimbs and shoulder girdle, both Tiktaalik and Ichthyostega may have had the ability to locomote on land in the manner of a seal, with the forward portion of the torso elevated, the hind part dragging behind. Finally, Tiktaalik fin bones are somewhat similar to the limb bones of tetrapods.
However, there are issues with positing Tiktaalik as a tetrapod ancestor. For example, it had a long spine with far more vertebrae than any known tetrapod or other tetrapodomorph fish. Also the oldest tetrapod trace fossils (tracks and trackways) predate it by a considerable margin. Several hypotheses have been proposed to explain this date discrepancy: 1) The nearest common ancestor of tetrapods and Tiktaalik dates to the Early Devonian. By this hypothesis, the lineage is the closest to tetrapods, but Tiktaalik itself was a late-surviving relic. 2) Tiktaalik represents a case of parallel evolution. 3) Tetrapods evolved more than once.
The oldest partial fossils of tetrapods date from the Frasnian beginning ≈380 mya. These include Elginerpeton and Obruchevichthys. Some paleontologists dispute their status as true (digit-bearing) tetrapods.
All known forms of Frasnian tetrapods became extinct in the Late Devonian extinction, also known as the end-Frasnian extinction. This marked the beginning of a gap in the tetrapod fossil record known as the Famennian gap, occupying roughly the first half of the Famennian stage.
The oldest near-complete tetrapod fossils, Acanthostega and Ichthyostega, date from the second half of the Fammennian. Although both were essentially four-footed fish, Ichthyostega is the earliest known tetrapod that may have had the ability to pull itself onto land and drag itself forward with its forelimbs. There is no evidence that it did so, only that it may have been anatomically capable of doing so.
The publication in 2018 of Tutusius umlambo and Umzantsia amazana from high latitude Gondwana setting indicate that the tetrapods enjoyed a global distribution by the end of the Devonian and even extended into the high latitudes.
The end-Fammenian marked another extinction, known as the end-Fammenian extinction or the Hangenberg event, which is followed by another gap in the tetrapod fossil record, Romer's gap, also known as the Tournaisian gap. This gap, which was initially 30 million years, but has been gradually reduced over time, currently occupies much of the 13.9-million year Tournaisian, the first stage of the Carboniferous period.
Tetrapod-like vertebrates first appeared in the Early Devonian period, and species with limbs and digits were around by the Late Devonian. These early "stem-tetrapods" included animals such as Ichthyostega, with legs and lungs as well as gills, but still primarily aquatic and poorly adapted for life on land. The Devonian stem-tetrapods went through two major population bottlenecks during the Late Devonian extinctions, also known as the Kellwasser event and Hangenberg event extinctions. These extinction events led to the disappearance of stem-tetrapods with fish-like features. When stem-tetrapods reappear in the fossil record in early Carboniferous deposits, some 10 million years later, the adult forms of some are somewhat adapted to a terrestrial existence. Why they went to land in the first place is still debated.
Amphibians and amniotes were affected by the Carboniferous rainforest collapse (CRC), an extinction event that occurred around 307 million years ago. The sudden collapse of a vital ecosystem shifted the diversity and abundance of major groups. Amniotes and temnospondyls in particular were more suited to the new conditions. They invaded new ecological niches and began diversifying their diets to include plants and other tetrapods, previously having been limited to insects and fish.
The end of the Permian saw a major turnover in fauna during the Permian–Triassic extinction event. There was a protracted loss of species, due to multiple extinction pulses. Many of the once large and diverse groups died out or were greatly reduced.
Among the characteristic Paleozoic non-amniote tetrapods, few survived into the Mesozoic. briefly recovered in the Triassic, spawning the large aquatic Stereospondyli and the small terrestrial lissamphibians (the earliest frogs, salamanders, and caecilians). However, stereospondyl diversity would crash at the end of the Triassic. By the Late Cretaceous, the only surviving amphibians were lissamphibians. Many groups of synapsids, such as and , that once comprised the dominant terrestrial fauna of the Permian, also became extinct during the Triassic. During the Jurassic, one synapsid group (Cynodontia) gave rise to the modern , which survived through the rest of the Mesozoic to later diversify during the Cenozoic. The Cretaceous-Paleogene extinction event at the end of the Mesozoic killed off many organisms, including all the non-avian dinosaurs and nearly all marine reptiles. Birds survived and diversified during the Cenozoic, similar to mammals.
The inclusion of certain extinct groups in the crown Tetrapoda depends on the relationships of modern amphibians, or . There are currently three major hypotheses on the origins of lissamphibians. In the temnospondyl hypothesis (TH), lissamphibians are most closely related to dissorophoid , which would make temnospondyls tetrapods. In the lepospondyl hypothesis (LH), lissamphibians are the sister taxon of lysorophian , making lepospondyls tetrapods and temnospondyls stem-tetrapods. In the polyphyletic hypothesis (PH), frogs and salamanders evolved from dissorophoid temnospondyls while caecilians come out of microsaur lepospondyls, making both lepospondyls and temnospondyls true tetrapods.
The temnospondyl hypothesis is the currently favored or majority view, supported by Ruta et al (2003a,b), Ruta and Coates (2007), Coates et al (2008), Sigurdsen and Green (2011), and Schoch (2013, 2014).
Cladogram modified after Coates, Ruta and Friedman (2008).
Cladogram modified after Schoch, Frobisch, (2009).
In Acanthostega, a basal tetrapod, the gill-covering bones have disappeared, although the underlying gill arches are still present. Besides the opercular series, Acanthostega also lost the throat-covering bones (gular series). The opercular series and gular series combined are sometimes known as the operculo-gular or operculogular series. Other bones in the neck region lost in Acanthostega (and later tetrapods) include the extrascapular series and the supracleithral series. Both sets of bones connect the shoulder girdle to the skull. With the loss of these bones, tetrapods acquired a neck, allowing the head to rotate somewhat independently of the torso. This, in turn, required stronger soft-tissue connections between head and torso, including muscles and ligaments connecting the skull with the spine and shoulder girdle. Bones and groups of bones were also consolidated and strengthened.
In Carboniferous tetrapods, the neck joint (occiput) provided a pivot point for the spine against the back of the skull. In tetrapodomorph fishes such as Eusthenopteron, no such neck joint existed. Instead, the notochord (a rod made of proto-cartilage) entered a hole in the back of the braincase and continued to the middle of the braincase. Acanthostega had the same arrangement as Eusthenopteron, and thus no neck joint. The neck joint evolved independently in different lineages of early tetrapods.
All tetrapods appear to hold their necks at the maximum possible vertical extension when in a normal, alert posture.
The pelvis girdle also was much larger than the simple plate found in fishes, accommodating more muscles. It extended far dorsally and was joined to the backbone by one or more specialized sacral . The hind legs were somewhat specialized in that they not only supported weight, but also provided propulsion. The dorsal extension of the pelvis was the ilium, while the broad ventral plate was composed of the pubis in front and the ischium in behind. The three bones met at a single point in the center of the pelvic triangle called the acetabulum, providing a surface of articulation for the femur.
The paired fins of the early sarcopterygians were smaller than tetrapod limbs, but the skeletal structure was very similar in that the early sarcopterygians had a single proximal bone (analogous to the humerus or femur), two bones in the next segment (forearm or lower leg), and an irregular subdivision of the fin, roughly comparable to the structure of the Carpal bones/tarsus and hand of a hand.
In later terrestrial tetrapods, two methods of jaw closure emerge: static and kinetic inertial (also known as snapping). In the static system, the jaw muscles are arranged in such a way that the jaws have maximum force when shut or nearly shut. In the kinetic inertial system, maximum force is applied when the jaws are wide open, resulting in the jaws snapping shut with great velocity and momentum. Although the kinetic inertial system is occasionally found in fish, it requires special adaptations (such as very narrow jaws) to deal with the high viscosity and density of water, which would otherwise impede rapid jaw closure.
The tetrapod tongue is built from muscles that once controlled gill openings. The tongue is anchored to the hyoid bone, which was once the lower half of a pair of gill bars (the second pair after the ones that evolved into jaws).
Early tetrapods probably relied on four methods of respiration: with lungs, with gills, cutaneous respiration (skin breathing), and breathing through the lining of the digestive tract, especially the mouth.
In the earliest tetrapods, exhalation was probably accomplished with the aid of the muscles of the torso (the thoracoabdominal region). Inhaling with the ribs was either primitive for amniotes, or evolved independently in at least two different lineages of amniotes. It is not found in amphibians. The muscularized diaphragm is unique to mammals.
Early tetrapods inherited a set of five rod cell and cone cell opsins known as the vertebrate .
Four cone opsins were present in the first vertebrate, inherited from invertebrate ancestors:
A single rod opsin, rhodopsin, was present in the first jawed vertebrate, inherited from a jawless vertebrate ancestor:
The hyomandibula of fish migrated upwards from its jaw supporting position, and was reduced in size to form the columella. Situated between the tympanum and braincase in an air-filled cavity, the columella was now capable of transmitting vibrations from the exterior of the head to the interior. Thus the columella became an important element in an impedance matching system, coupling airborne sound waves to the receptor system of the inner ear. This system had evolved independently within several different amphibian lineages.
The impedance matching ear had to meet certain conditions to work. The columella had to be perpendicular to the tympanum, small and light enough to reduce its inertia, and suspended in an air-filled cavity. In modern species that are sensitive to over 1 kHz frequency, the footplate of the columella is 1/20th the area of the tympanum. However, in early amphibians the columella was too large, making the footplate area oversized, preventing the hearing of high frequencies. So it appears they could only hear high intensity, low frequency sounds—and the columella more probably just supported the brain case against the cheek.
Only in the early Triassic, about a hundred million years after they conquered land, did the tympanic middle ear evolve (independently) in all the tetrapod lineages. About fifty million years later (late Triassic), in mammals, the columella was reduced even further to become the stapes.
Evolution
History
Palaeozoic
Devonian stem-tetrapods
Carboniferous
Permian
Mesozoic
Cenozoic
Phylogeny
Stem group
Crown group
Origins of modern amphibians
Temnospondyl hypothesis (TH)
Lepospondyl hypothesis (LH)
Polyphyly hypothesis (PH)
Anatomy and physiology
Skull
Neck
Dentition
Axial skeleton
Girdles
Limbs
Locomotion
Feeding
Respiration
Gills
Lungs
Recoil aspiration
Cutaneous respiration
Carbon dioxide metabolism
Circulation
Senses
Olfaction
Lateral line system
Vision
Balance
Hearing
See also
Further reading
|
|