Supercooling, also known as undercooling, is the process of lowering the temperature of a liquid below its freezing point without it becoming a solid. Per the established international definition, supercooling means ‘cooling a substance below the normal freezing point without solidification’. IIR International Dictionary of Refrigeration, http://dictionary.iifiir.org/search.php
/ref> While it can be achieved by different physical means, the postponed solidification is most often due to the absence of nucleation around which a crystal structure can form. The supercooling of water can be achieved without any special techniques other than chemical demineralization, down to . Supercooled water can occur naturally, for example in the atmosphere, animals or plants.
This phenomenon was first identified in 1724 by Daniel Gabriel Fahrenheit, while developing Fahrenheit scale.
Homogeneous nucleation can occur above the glass transition temperature, but if homogeneous nucleation has not occurred above that temperature, an amorphous (non-crystalline) solid will form.
Water normally freezes at , but it can be "supercooled" at standard pressure down to its crystal homogeneous nucleation at almost . The process of supercooling requires water to be pure and free of nucleation sites, which can be achieved by processes like reverse osmosis or chemical demineralization, but the cooling itself does not require any specialised technique. If water is cooled at a rate on the order of 106 K/s, the crystal nucleation can be avoided and water becomes a glass—that is, an amorphous (non-crystalline) solid. Its glass transition temperature is much colder and harder to determine, but studies estimate it at about . Amorphous ice can be heated up to approximately without nucleation occurring. In the range of temperatures between , experiments find only crystal ice.
Droplets of supercooled water often exist in Stratus cloud and . An aircraft flying through such a cloud sees an abrupt crystallization of these droplets, which can result in the formation of ice on the aircraft's wings or blockage of its instruments and probes, unless the aircraft is equipped with an appropriate ice protection system. Freezing rain is also caused by supercooled droplets.
The process opposite to supercooling, the melting of a solid above the freezing point, is much more difficult, and a solid will almost always melt at the same temperature for a given pressure. For this reason, it is the melting point which is typically identified, using melting point apparatus. Even when the subject of a paper is "freezing-point determination", the actual methodology is "the principle of observing the disappearance rather than the formation of ice". It is possible, at a given pressure, to superheating a liquid above its boiling point without it becoming gaseous.
Supercooling should not be confused with freezing-point depression. Supercooling is the cooling of a liquid below its freezing point without it becoming solid. Freezing point depression is when a solution can be cooled below the freezing point of the corresponding pure liquid due to the presence of the solute. An example of this is the freezing point depression that occurs when salt is added to pure water.
Constitutional supercooling is observed when the liquidus temperature gradient at the interface (the position x=0) is larger than the imposed temperature gradient:
The liquidus slope from the binary phase diagram is given by , so the constitutional supercooling criterion for a binary alloy can be written in terms of the concentration gradient at the interface:
The concentration gradient ahead of a planar interface is given by
where is the interface velocity, the diffusion coefficient, and and are the compositions of the liquid and solid at the interface, respectively (i.e., ).
For the steady-state growth of a planar interface, the composition of the solid is equal to the nominal alloy composition, , and the partition coefficient, , can be assumed constant. Therefore, the minimum thermal gradient necessary to create a stable solid front is given by
For more information, see Chapter 3 of
As an animal gets further and further below its melting point, the chance of spontaneous freezing increases dramatically for its internal fluids, since this is a thermodynamically unstable state. The fluids eventually reach the supercooling point, which is the temperature where the supercooled solution freezes spontaneously due to being so far below its normal freezing point. Animals unintentionally undergo supercooling and are only able to decrease the odds of freezing once supercooled. Even though supercooling is essential for survival, there are many risks associated with it.
Supercooling inhibits the formation of ice within the tissue by ice nucleation and allows the cells to maintain water in a liquid state and further allows the water within the cell to stay separate from extracellular ice. Cellular barriers such as lignin, suberin and the cuticle inhibit ice nucleators and force water into the supercooled tissue. The xylem and primary tissue of plants are very susceptible to cold temperatures because of the large proportion of water in the cell. Many boreal hardwood species in northern climates have the ability to prevent ice spreading into the shoots allowing the plant to tolerate the cold. Supercooling has been identified in the evergreen shrubs Rhododendron ferrugineum and Vaccinium vitis-idaea as well as Abies, Picea and Larix species. Freezing outside of the cell and within the cell wall does not affect the survival of the plant. However, the extracellular ice may lead to plant dehydration.
Supercooling was successfully applied to organ preservation at Massachusetts General Hospital/Harvard Medical School. that were later transplanted into recipient animals were preserved by supercooling for up to 4 days, quadrupling the limits of what could be achieved by conventional liver preservation methods. The livers were supercooled to a temperature of in a specialized solution that protected against freezing and injury from the cold temperature.
Another potential application is drug delivery. In 2015, researchers crystallized membranes at a specific time. Liquid-encapsulated drugs could be delivered to the site and, with a slight environmental change, the liquid rapidly changes into a crystalline form that releases the drug.
In 2016, a team at Iowa State University proposed a method for "soldering without heat" by using encapsulated droplets of supercooled liquid metal to repair heat sensitive electronic devices. In 2019, the same team demonstrated the use of undercooled metal to print solid metallic interconnects on surfaces ranging from polar (paper and Jello) to superhydrophobic (rose petals), with all the surfaces being lower modulus than the metal.
Eftekhari et al. proposed an empirical theory explaining that supercooling of ionic can build ordered channels for diffusion for energy storage applications. In this case, the electrolyte has a rigid structure comparable to a solid electrolyte, but the diffusion coefficient can be as large as in liquid electrolytes. Supercooling increases the medium viscosity, but keeps the directional channels open for diffusion.
|
|