Sunset (or sundown) is the disappearance of the Sun at the end of the Sun path, below the horizon of the Earth (or any other astronomical object in the Solar System) due to its rotation. As viewed from everywhere on Earth, it is a phenomenon that happens approximately once every 24 hours, except in areas close to the poles. The equinox Sun sets due west at the moment of both the spring and autumn equinoxes. As viewed from the Northern Hemisphere, the Sun sets to the northwest (or not at all) in the spring and summer, and to the southwest in the autumn and winter; these seasons are reversed for the Southern Hemisphere.
The sunset is defined in astronomy the moment the upper limb of the Sun disappears below the horizon. Near the horizon, atmospheric refraction causes sunlight rays to be distorted to such an extent that geometrically the solar disk is already about one diameter below the horizon when a sunset is observed. at Sunset Beach, New Jersey, U.S., seen through ]]Sunset is distinct from twilight, which is divided into three stages. The first one is civil twilight, which begins once the Sun has disappeared below the horizon, and continues until it descends to 6 degrees below the horizon. The early to intermediate stages of twilight coincide with Dusk. The second phase is nautical twilight, between 6 and 12 degrees below the horizon. The third phase is astronomical twilight, which is the period when the Sun is between 12 and 18 degrees below the horizon. Dusk is at the very end of astronomical twilight, and is the darkest moment of twilight just before night. Finally, night occurs when the Sun reaches 18 degrees below the horizon and no longer illuminates the sky.
Locations further north than the Arctic Circle and further south than the Antarctic Circle experience no full sunset or sunrise on at least one day of the year, when the polar day or the polar night persists continuously for 24 hours. At latitudes greater than within half a degree of either pole, the sun cannot rise or set on the same date on any day of the year, since the sun's angular elevation between solar noon and midnight is less than one degree.
Likewise, the same phenomenon exists in the Southern Hemisphere, but with the respective dates reversed, with the earliest sunsets occurring some time before June 21 in winter, and the latest sunsets occurring some time after December 21 in summer, again depending on one's southern latitude. For a few weeks surrounding both solstices, both sunrise and sunset get slightly later each day. Even on the equator, sunrise and sunset shift several minutes back and forth through the year, along with solar noon. These effects are plotted by an analemma. Starry Night Times – January 2007 (explains why Sun appears to cross slow before early January) The analemma , elliptical orbit effect. 'July 3rd to October 2nd the sun continues to drift to the west until it reaches its maximum "offset" in the west. Then from October 2 until January 21, the sun drifts back toward the east'
Neglecting atmospheric refraction and the Sun's non-zero size, whenever and wherever sunset occurs, it is always in the northwest quadrant from the March equinox to the September equinox, and in the southwest quadrant from the September equinox to the March equinox. Sunsets occur almost exactly due west on the equinoxes for all viewers on Earth. Exact calculations of the of sunset on other dates are complex, but they can be estimated with reasonable accuracy by using the analemma.
As sunrise and sunset are calculated from the leading and trailing edges of the Sun, respectively, and not the center, the duration of a daytime is slightly longer than nighttime (by about 10 minutes, as seen from temperate latitudes). Further, because the light from the Sun is refracted as it passes through the Earth's atmosphere, the Sun is still visible after it is geometrically below the horizon. Refraction also affects the apparent shape of the Sun when it is very close to the horizon. It makes things appear higher in the sky than they really are. Light from the bottom edge of the Sun's disk is refracted more than light from the top, since refraction increases as the angle of elevation decreases. This raises the apparent position of the bottom edge more than the top, reducing the apparent height of the solar disk. Its width is unaltered, so the disk appears wider than it is high. (In reality, the Sun is almost exactly spherical.) The Sun also appears larger on the horizon, an optical illusion, similar to the moon illusion.
Locations within the Arctic and Antarctic Circle experience periods where the Sun does not rise or set for 24 hours or more, known as Midnight sun and polar night. These phenomena occur due to Axial tilt, causing continuous sunlight or darkness at certain times of the year.
An interesting feature in the figure on the right is apparent hemispheric symmetry in regions where daily sunrise and sunset actually occur. This symmetry becomes clear if the hemispheric relation in sunrise equation is applied to the x- and y-components of the solar vector presented in Ref. Solar geometry routines that model solar azimuth angles at sunset permit the calculation using latitude, date, and time parameters to be done precisely.
Sunset colors are typically more brilliant than sunrise colors, because the evening air contains more particles than morning air. Sometimes just before sunrise or after sunset a green flash can be seen.
Ash from volcanic eruptions, trapped within the troposphere, tends to mute sunset and sunrise colors, while volcanic ejecta that is instead lofted into the stratosphere (as thin clouds of tiny sulfuric acid droplets), can yield beautiful post-sunset colors called and pre-sunrise glows. A number of eruptions, including those of Mount Pinatubo in 1991 and Krakatoa in 1883, have produced sufficiently high stratus clouds containing sulfuric acid to yield remarkable sunset afterglows (and pre-sunrise glows) around the world. The high-altitude clouds serve to reflect strongly reddened sunlight still striking the stratosphere after sunset, down to the surface.
Some of the most varied colors at sunset can be found in the opposite or eastern sky after the Sun has set during twilight. Depending on weather conditions and the types of present, these colors have a wide spectrum, and can produce unusual results.
In the Hebrew calendar, the Islamic calendar, and the Bahá'í calendar, the day starts at sunset.
|
|