A rainbow is an optical phenomenon caused by refraction, internal reflection and dispersion of light in water droplets resulting in a continuous visible spectrum of light appearing in the sky. The rainbow takes the form of a multicoloured circular arc. Rainbows caused by sunlight always appear in the section of sky directly opposite the Sun. Rainbows can be caused by many forms of airborne water. These include not only rain, but also mist, spray, and airborne dew.
Rainbows can be full circles. However, the observer normally sees only an arc formed by illuminated droplets above the ground, and centered on a line from the Sun to the observer's eye.
In a primary rainbow, the arc shows red on the outer part and violet on the inner side. This rainbow is caused by light being refracted when entering a droplet of water, then reflected inside on the back of the droplet and refracted again when leaving it.
In a double rainbow, a second arc is seen outside the primary arc, and has the order of its colours reversed, with red on the inner side of the arc. This is caused by the light being reflected twice on the inside of the droplet before leaving it.
The rainbow effect is also commonly seen near waterfalls or fountains. In addition, the effect can be artificially created by dispersing water droplets into the air during a sunny day. Rarely, a moonbow, lunar rainbow or nighttime rainbow, can be seen on strongly moonlit nights. As human visual perception for colour is poor in low light, moonbows are often perceived to be white.
It is difficult to photograph the complete semicircle of a rainbow in one frame, as this would require an angle of view of 84°. For a 35 mm camera, a wide-angle lens with a focal length of 19 mm or less would be required. Now that software for Image stitching several images into a panorama is available, images of the entire arc and even secondary arcs can be created fairly easily from a series of overlapping frames.
From above the Earth such as in an aeroplane, it is sometimes possible to see a rainbow as a full circle. This phenomenon can be confused with the glory phenomenon, but a glory is usually much smaller, covering only 5–20°.
The sky inside a primary rainbow is brighter than the sky outside of the bow. This is because each raindrop is a sphere and it scatters light over an entire circular disc in the sky. The radius of the disc depends on the wavelength of light, with red light being scattered over a larger angle than blue light. Over most of the disc, scattered light at all wavelengths overlaps, resulting in white light which brightens the sky. At the edge, the wavelength dependence of the scattering gives rise to the rainbow.
The light of a primary rainbow arc is 96% polarised tangential to the arc. The light of the second arc is 90% polarised.
Newton, who admitted his eyes were not very critical in distinguishing colours, originally (1672) divided the spectrum into five main colours: red, yellow, green, blue and violet. Later he included orange and indigo, giving seven main colours by analogy to the number of notes in a musical scale.Isaac Newton, Optice: Sive de Reflexionibus, Refractionibus, Inflexionibus & Coloribus Lucis Libri Tres, Propositio II, Experimentum VII, edition 1740 Newton chose to divide the visible spectrum into seven colours out of a belief derived from the beliefs of the Ancient Greece , who thought there was a connection between the colours, the musical notes, the known objects in the Solar System, and the days of the week. Scholars have noted that what Newton regarded at the time as "blue" would today be regarded as cyan, what Newton called "indigo" would today be called blue.
Newton's first colours | Red | Yellow | Green | Blue | Violet | ||
Newton's later colours | Red | Orange | Yellow | Green | Blue | Indigo | Violet |
Modern interpretation | Red | Orange | Yellow | Green | Cyan | Blue | Violet |
The colour pattern of a rainbow is different from a spectrum, and the colours are less saturated. There is spectral smearing in a rainbow since, for any particular wavelength, there is a distribution of exit angles, rather than a single unvarying angle. In addition, a rainbow is a blurred version of the bow obtained from a point source, because the disk diameter of the sun (0.5°) cannot be neglected compared to the width of a rainbow (2°). The number of colour bands of a rainbow may therefore be different from the number of bands in a spectrum, especially if the droplets are particularly large or small. Therefore, the number of colours of a rainbow is variable. If, however, the word rainbow is used inaccurately to mean spectrum, it is the number of main colours in the spectrum.
Moreover, rainbows have bands beyond red and violet in the respective near infrared and ultraviolet regions, however, these bands are not visible to humans. Only near frequencies of these regions to the visible spectrum are included in rainbows, since water and air become increasingly opaque to these frequencies, scattering the light. The UV band is sometimes visible to cameras using black and white film.
The question of whether everyone sees seven colours in a rainbow is related to the idea of linguistic relativity. Suggestions have been made that there is universality in the way that a rainbow is perceived. However, more recent research suggests that the number of distinct colours observed and what these are called depend on the language that one uses, with people whose language has fewer colour words seeing fewer discrete colour bands.
The reason the returning light is most intense at about 42° is that this is a turning point – light hitting the outermost ring of the drop gets returned at less than 42°, as does the light hitting the drop nearer to its centre. There is a circular band of light that all gets returned right around 42°. If the Sun were a laser emitting parallel, monochromatic rays, then the luminance (brightness) of the bow would tend toward infinity at this angle if interference effects are ignored . But since the Sun's luminance is finite and its rays are not all parallel (it covers about half a degree of the sky) the luminance does not go to infinity. Furthermore, the amount by which light is refracted depends upon its wavelength, and hence its colour. This effect is called dispersion. Blue light (shorter wavelength) is refracted at a greater angle than red light, but due to the reflection of light rays from the back of the droplet, the blue light emerges from the droplet at a smaller angle to the original incident white light ray than the red light. Due to this angle, blue is seen on the inside of the arc of the primary rainbow, and red on the outside. The result of this is not only to give different colours to different parts of the rainbow, but also to diminish the brightness. (A "rainbow" formed by droplets of a liquid with no dispersion would be white, but brighter than a normal rainbow.)
The light at the back of the raindrop does not undergo total internal reflection, and most of the light emerges from the back. However, light coming out the back of the raindrop does not create a rainbow between the observer and the Sun because spectra emitted from the back of the raindrop do not have a maximum of intensity, as the other visible rainbows do, and thus the colours blend together rather than forming a rainbow.
A rainbow does not exist at one particular location. Many rainbows exist; however, only one can be seen depending on the particular observer's viewpoint as droplets of light illuminated by the sun. All raindrops refract and reflect the sunlight in the same way, but only the light from some raindrops reaches the observer's eye. This light is what constitutes the rainbow for that observer. The whole system composed by the Sun's rays, the observer's head, and the (spherical) water drops has an axial symmetry around the axis through the observer's head and parallel to the Sun's rays. The rainbow is curved because the set of all the raindrops that have the right angle between the observer, the drop, and the Sun, lie on a cone pointing at the sun with the observer at the tip. The base of the cone forms a circle at an angle of 40–42° to the line between the observer's head and their shadow but 50% or more of the circle is below the horizon, unless the observer is sufficiently far above the earth's surface to see it all, for example in an aeroplane (see below). Alternatively, an observer with the right vantage point may see the full circle in a fountain or waterfall spray. Conversely, at lower latitudes near midday (specifically, when the sun's elevation exceeds 42 degrees) a rainbow will not be visible against the sky.
Given a spherical raindrop, and defining the perceived angle of the rainbow as , and the angle of the internal reflection as , then the angle of incidence of the Sun's rays with respect to the drop's surface normal is . Since the angle of refraction is , Snell's law gives us
The rainbow will occur where the angle is maximum with respect to the angle . Therefore, from calculus, we can set , and solve for , which yields
For red light (wavelength 750nm, based on the dispersion relation of water), the radius angle is 42.5°; for blue light (wavelength 350nm, ), the radius angle is 40.6°.
Secondary rainbows are caused by a double reflection of sunlight inside the water droplets. Technically the secondary bow is centred on the sun itself, but since its angular size is more than 90° (about 127° for violet to 130° for red), it is seen on the same side of the sky as the primary rainbow, about 10° outside it at an apparent angle of 50–53°. As a result of the "inside" of the secondary bow being "up" to the observer, the colours appear reversed compared to those of the primary bow.
The secondary rainbow is fainter than the primary because more light escapes from two reflections compared to one and because the rainbow itself is spread over a greater area of the sky. Each rainbow reflects white light inside its coloured bands, but that is "down" for the primary and "up" for the secondary. The dark area of unlit sky lying between the primary and secondary bows is called Alexander's band, after Alexander of Aphrodisias, who first described it.See:
Meanwhile, the even rarer case of a rainbow split into three branches was observed and photographed in nature.
A circular rainbow should not be confused with the glory, which is much smaller in diameter and is created by different optical processes. In the right circumstances, a glory and a (circular) rainbow or fog bow can occur together. Another atmospheric phenomenon that may be mistaken for a "circular rainbow" is the 22° halo, which is caused by ice crystals rather than liquid water droplets, and is located around the Sun (or Moon), not opposite it.
Supernumerary rainbows cannot be explained using classical geometric optics. The alternating faint bands are caused by interference between rays of light following slightly different paths with slightly varying lengths within the raindrops. Some rays are in phase, reinforcing each other through constructive interference, creating a bright band; others are out of phase by up to half a wavelength, cancelling each other out through destructive interference, and creating a gap. Given the different angles of refraction for rays of different colours, the patterns of interference are slightly different for rays of different colours, so each bright band is differentiated in colour, creating a miniature rainbow. Supernumerary rainbows are clearest when raindrops are small and of uniform size. The very existence of supernumerary rainbows was historically a first indication of the wave nature of light, and the first explanation was provided by Thomas Young in 1804.See:
A reflected rainbow may appear in the water surface below the horizon. The sunlight is first deflected by the raindrops, and then reflected off the body of water, before reaching the observer. The reflected rainbow is frequently visible, at least partially, even in small puddles.
A reflection rainbow may be produced where sunlight reflects off a body of water before reaching the raindrops, if the water body is large, quiet over its entire surface, and close to the rain curtain. The reflection rainbow appears above the horizon. It intersects the normal rainbow at the horizon, and its arc reaches higher in the sky, with its centre as high above the horizon as the normal rainbow's centre is below it. Reflection bows are usually brightest when the sun is low because at that time its light is most strongly reflected from water surfaces. As the sun gets lower the normal and reflection bows are drawn closer together. Due to the combination of requirements, a reflection rainbow is rarely visible.
Up to eight separate bows may be distinguished if the reflected and reflection rainbows happen to occur simultaneously: the normal (non-reflection) primary and secondary bows above the horizon (1, 2) with their reflected counterparts below it (3, 4), and the reflection primary and secondary bows above the horizon (5, 6) with their reflected counterparts below it (7, 8).
For these reasons, naturally occurring rainbows of an order higher than 2 are rarely visible to the naked eye. Nevertheless, sightings of the third-order bow in nature have been reported, and in 2011 it was photographed definitively for the first time. Shortly after, the fourth-order rainbow was photographed as well, and in 2014 the first ever pictures of the fifth-order (or quinary) rainbow were published. The quinary rainbow lies partially in the gap between the primary and secondary rainbows and is far fainter than even the secondary. In a laboratory setting, it is possible to create bows of much higher orders. Felix Billet (1808–1882) depicted angular positions up to the 19th-order rainbow, a pattern he called a "rose of rainbows".J.D. Walker, "Mysteries of rainbows, notably their rare supernumerary arcs," Sci. Am. 242(6), 174–184 (1980). In the laboratory, it is possible to observe higher-order rainbows by using extremely bright and well collimated light produced by . Up to the 200th-order rainbow was reported by Ng et al. in 1998 using a similar method but an argon ion laser beam.
Tertiary and quaternary rainbows should not be confused with "triple" and "quadruple" rainbows—terms sometimes erroneously used to refer to the (much more common) supernumerary bows and reflection rainbows.
Fog bows should not be confused with ice halos, which are very common around the world and visible much more often than rainbows (of any order),Les Cowley. Observing Halos – Getting Started Atmospheric Optics , accessed 3 December 2013. yet are unrelated to rainbows.
Both arcs are brightly coloured ring segments centred on the zenith, but in different positions in the sky: The circumzenithal arc is notably curved and located high above the Sun (or Moon) with its convex side pointing downwards (creating the impression of an "upside down rainbow"); the circumhorizontal arc runs much closer to the horizon, is more straight and located at a significant distance below the Sun (or Moon). Both arcs have their red side pointing towards the Sun and their violet part away from it, meaning the circumzenithal arc is red on the bottom, while the circumhorizontal arc is red on top.
The circumhorizontal arc is sometimes referred to by the misnomer "fire rainbow". In order to view it, the Sun or Moon must be at least 58° above the horizon, making it a rare occurrence at higher latitudes. The circumzenithal arc, visible only at a solar or lunar elevation of less than 32°, is much more common, but often missed since it occurs almost directly overhead.
The displacement of the rainbow due to different refractive indices can be pushed to a peculiar limit. For a material with a refractive index larger than 2, there is no angle fulfilling the requirements for the first order rainbow. For example, the index of refraction of diamond is about 2.4, so diamond spheres would produce rainbows starting from the second order, omitting the first order. In general, as the refractive index exceeds a number , where is a natural number, the critical incidence angle for times internally reflected rays escapes the domain . This results in a rainbow of the -th order shrinking to the antisolar point and vanishing.
In Book I of Naturales Quaestiones (), the Roman Empire philosopher Seneca the Younger discusses various theories of the formation of rainbows extensively, including those of Aristotle. He notices that rainbows appear always opposite to the Sun, that they appear in water sprayed by a rower, in the water spat by a fulling on clothes stretched on pegs or by water sprayed through a small hole in a burst pipe. He even speaks of rainbows produced by small rods (virgulae) of glass, anticipating Newton's experiences with prisms. He takes into account two theories: one, that the rainbow is produced by the Sun reflecting in each water drop, the other, that it is produced by the Sun reflected in a cloud shaped like a concave mirror; he favours the latter. He also discusses other phenomena related to rainbows: the mysterious "virgae" (rods), halos and Sun dog.
According to Hüseyin Gazi Topdemir, the Arab physicist and polymath Ibn al-Haytham (965–1039 AD) attempted to provide a scientific explanation for the rainbow phenomenon. In his Maqala fi al-Hala wa Qaws Quzah ( On the Rainbow and Halo), al-Haytham "explained the formation of rainbow as an image, which forms at a concave mirror. If the rays of light coming from a farther light source reflect to any point on axis of the concave mirror, they form concentric circles in that point. When it is supposed that the sun as a farther light source, the eye of viewer as a point on the axis of mirror and a cloud as a reflecting surface, then it can be observed the concentric circles are forming on the axis." He was not able to verify this because his theory that "light from the sun is reflected by a cloud before reaching the eye" did not allow for a possible verification. This explanation was repeated by Averroes, and, though incorrect, provided the groundwork for the correct explanations later given by Kamāl al-Dīn al-Fārisī in 1309 and, independently, by Theodoric of Freiberg (c. 1250–c. 1311)—both having studied al-Haytham's Book of Optics.Nader El-Bizri 'Ibn al-Haytham et le problème de la couleur', Oriens-Occidens: Cahiers du centre d'histoire des sciences et des philosophies arabes et médiévales, C.N.R.S. 7 (2009), pp. 201–226.
In Song Dynasty (960–1279), a polymath scholar-official named Shen Kuo (1031–1095) hypothesised—as a certain Sun Sikong (1015–1076) did before him—that rainbows were formed by a phenomenon of sunlight encountering droplets of rain in the air. Paul Dong writes that Shen's explanation of the rainbow as a phenomenon of atmospheric refraction "is basically in accord with modern scientific principles."
According to Nader El-Bizri, the Persian astronomer, Qutb al-Din al-Shirazi (1236–1311), gave a fairly accurate explanation for the rainbow phenomenon. This was elaborated on by his student, Kamāl al-Dīn al-Fārisī (1267–1319), who gave a more mathematically satisfactory explanation of the rainbow. He "proposed a model where the ray of light from the sun was refracted twice by a water droplet, one or more reflections occurring between the two refractions." An experiment with a water-filled glass sphere was conducted and al-Farisi showed the additional refractions due to the glass could be ignored in his model. As he noted in his Kitab Tanqih al-Manazir ( The Revision of the Optics), al-Farisi used a large clear vessel of glass in the shape of a sphere, which was filled with water, in order to have an experimental large-scale model of a rain drop. He then placed this model within a camera obscura that has a controlled aperture for the introduction of light. He projected light unto the sphere and ultimately deduced through several trials and detailed observations of reflections and refractions of light that the colours of the rainbow are phenomena of the decomposition of light.
In Europe, Ibn al-Haytham's Book of Optics was translated into Latin and studied by Robert Grosseteste. His work on light was continued by Roger Bacon, who wrote in his Opus Majus of 1268 about experiments with light shining through crystals and water droplets showing the colours of the rainbow. In addition, Bacon was the first to calculate the angular size of the rainbow. He stated that the rainbow summit can not appear higher than 42° above the horizon. Theodoric of Freiberg is known to have given an accurate theoretical explanation of both the primary and secondary rainbows in 1307. He explained the primary rainbow, noting that "when sunlight falls on individual drops of moisture, the rays undergo two refractions (upon ingress and egress) and one reflection (at the back of the drop) before transmission into the eye of the observer."Theodoric of Freiberg (c. 1304–1310) De iride et radialibus impressionibus (On the rainbow and the impressions of radiance). He explained the secondary rainbow through a similar analysis involving two refractions and two reflections.
Descartes' 1637 treatise, Discourse on Method (Discours de la Méthode), further advanced this explanation. Knowing that the size of raindrops did not appear to affect the observed rainbow, he experimented with passing rays of light through a large glass sphere filled with water. By measuring the angles that the rays emerged, he concluded that the primary bow was caused by a single internal reflection inside the raindrop and that a secondary bow could be caused by two internal reflections. He supported this conclusion with a derivation of the law of refraction (subsequently to, but independently of, Snell) and correctly calculated the angles for both bows. His explanation of the colours, however, was based on a mechanical version of the traditional theory that colours were produced by a modification of white light.
Isaac Newton demonstrated that white light was composed of the light of all the colours of the rainbow, which a glass prism could separate into the full spectrum of colours, rejecting the theory that the colours were produced by a modification of white light. He also showed that red light is refracted less than blue light, which led to the first scientific explanation of the major features of the rainbow. Newton's corpuscular theory of light was unable to explain supernumerary rainbows, and a satisfactory explanation was not found until Thomas Young realised that light behaves as a wave under certain conditions, and can interfere with itself.
Young's work was refined in the 1820s by George Biddell Airy, who explained the dependence of the strength of the colours of the rainbow on the size of the water droplets.See:
Modern physical descriptions of the rainbow are based on Mie scattering, work published by Gustav Mie in 1908.G. Mie (1908) "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen" (Contributions to the optics of turbid media, especially of colloidal metal solutions), Annalen der Physik, 4th series, 25 (3): 377–445. Advances in computational methods and optical theory continue to lead to a fuller understanding of rainbows. For example, Nussenzveig provides a modern overview.
A very similar experiment consists in using a cylindrical glass vessel filled with water or a solid transparent cylinder and illuminated either parallel to the circular base (i.e. light rays remaining at a fixed height while they transit the cylinder)G. Casini and A. Covello, “The ”rainbow” in the drop,” Am. J. Phys. 80(11), 1027–1034 (2012).“Primary and Secondary Bow of a Rainbow”, U.C. Berkeley Physics Lecture Demonstrations, link or under an angle to the base. Under these latter conditions the rainbow angles change relative to the natural phenomenon since the effective index of refraction of water changes (Bravais' index of refraction for inclined rays applies).
Other experiments use small liquid drops (see text above).
In heraldry, the rainbow proper consists of 4 bands of colour (argent, gules, or, and vert) with the ends resting on clouds. Generalised examples in coat of arms include those of the towns of Regen and Pfreimd, both in Bavaria, Germany; of Bouffémont, France; and of the 69th Infantry Regiment (New York) of the United States Army National Guard.
have been used for centuries. It was a symbol of the Cooperative movement in the German Peasants' War in the 16th century, of peace in Italy, and of LGBT pride and LGBT social movements; the rainbow flag as a symbol of LGBT pride and the June pride month since it was designed by Gilbert Baker in 1978. In 1994, Archbishop Desmond Tutu and President Nelson Mandela described newly democratic post-apartheid South Africa as the rainbow nation. The rainbow has also been used in technology product logos, including the Apple Computer logo. Many political alliances spanning multiple political parties have called themselves a "Rainbow Coalition".
Pointing at rainbows has been considered a taboo in many cultures.
|
|