Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the Ancient Greece colony of Crotone, in modern Calabria (Italy) circa 530 BC. Early Pythagorean communities spread throughout Magna Graecia.
Already during Pythagoras' life it is likely that the distinction between the akousmatikoi ("those who listen"), who is conventionally regarded as more concerned with religious, and ritual elements, and associated with the oral tradition, and the mathematikoi ("those who learn") existed. The ancient biographers of Pythagoras, Iamblichus () and his master Porphyry ( ) seem to make the distinction of the two as that of 'beginner' and 'advanced'. As the Pythagorean cenobites practiced an esoteric path, like the mystery schools of antiquity, the adherents, akousmatikoi, following initiation became mathematikoi. It is wrong to say that the Pythagoreans were superseded by the Cynics in the 4th century BC, but it seems to be a distinction mark of the Cynics to disregard the hierarchy and protocol, ways of initiatory proceedings significant for the Pythagorean community; subsequently did the Greek philosophical traditions become more diverse. The Platonic Academy was arguably a Pythagorean cenobitic institution, outside the city walls of Athens in the 4th century BC. As a sacred grove dedicated to Athena, and Academus (Academos). The academy, the sacred grove of Academos, may have existed, as the contemporaries seem to have believed, since the Bronze Age, even pre-existing the Trojan War. Yet according to Plutarch it was the Athenian strategos (general) Kimon Milkiadou () who converted this, "waterless and arid spot into a well watered grove, which he provided with clear running-tracks and shady walks". Plato (less known as Aristocles) lived almost a hundred years later, circa 427 to 348 BC. On the other hand, it seems likely that this was a part of the re-building of Athens led by Kimon Milkiadou and Themistocles, following the Achaemenid destruction of Athens in 480–479 BC during the war with Persia. Kimon is at least associated with the building of the southern Wall of Themistocles, the city walls of ancient Athens. It seems likely that the Athenians saw this as a rejuvenation of the sacred grove of Academos.
Following political instability in Magna Graecia, some Pythagorean philosophers moved to mainland Greece while others regrouped in Rhegium. By about the majority of Pythagorean philosophers had left Italy. Pythagorean ideas exercised a marked influence on Plato and through him, on all of Western philosophy. Many of the surviving sources on Pythagoras originate with Aristotle and the philosophers of the Peripatetic school.
As a philosophic tradition, Pythagoreanism was revived in the giving rise to Neopythagoreanism. The worship of Pythagoras continued in Italy and as a religious community Pythagoreans appear to have survived as part of, or deeply influenced, the Bacchic and Orphism.
Much of the surviving sources on Pythagoras originated with Aristotle and the philosophers of the Peripatetic school, which founded historiographical academic traditions such as biography, doxography and the history of science. The surviving 5th century BC sources on Pythagoras and early Pythagoreanism are void of supernatural elements, while surviving 4th century BC sources on Pythagoras' teachings introduced legend and fable. Philosophers who discussed Pythagoreanism, such as Anaximander, Andron of Ephesus, Heraclides and Neanthes had access to historical written sources as well as the oral tradition about Pythagoreanism, which by the 4th century BC was in decline. Neopythagorean philosophers, who authored many of the surviving sources on Pythagoreanism, continued the tradition of legend and fantasy.
The earliest surviving ancient source on Pythagoras and his followers is a satire by Xenophanes, on the Pythagorean beliefs on the transmigration of souls. Xenophanes wrote of Pythagoras that:
In a surviving fragment from Heraclitus, Pythagoras and his followers are described as follows:
Two other surviving fragments of ancient sources on Pythagoras are by Ion of Chios and Empedocles. Both were born in the 490s, after Pythagoras' death. By that time, he was known as a sage and his fame had spread throughout Greece. According to Ion, Pythagoras was:
Empedocles described Pythagoras as "a man of surpassing knowledge, master especially of all kinds of wise works, who had acquired the upmost wealth of understanding". In the 4th century BC the Sophist Alcidamas wrote that Pythagoras was widely honored by Italians.
Today scholars typically distinguish two periods of Pythagoreanism: early-Pythagoreanism, from the 6th until the 5th century BC, and late-Pythagoreanism, from the 4th until the 3rd century BC. The Spartan colony of Taranto in Italy became the home for many practitioners of Pythagoreanism and later for Neopythagorean philosophers. Pythagoras had also lived in Crotone and Metaponto, both of which were Achaean colonies. Early-Pythagorean sects lived in Croton and throughout Magna Graecia. They espoused to a rigorous life of the intellect and strict rules on diet, clothing and behavior. Their burial rites were tied to their belief in the immortality of the soul.
Early-Pythagorean sects were closed societies and new Pythagoreans were chosen based on merit and discipline. Ancient sources record that early-Pythagoreans underwent a five-year initiation period of listening to the teachings ( akousmata) in silence. Initiates could through a test become members of the inner circle. However, Pythagoreans could also leave the community if they wished.
Pythagoras had been born on the island of Samos at around 570 BC and left his homeland at around 530 BC in opposition to the policies of Polycrates. Before settling in Croton, Pythagoras had traveled throughout Ancient Egypt and Babylonia. In Croton, Pythagoras established the first Pythagorean community, described as a secret society, and attained political influence. In the early 5th century BC Croton acquired great military and economic importance. Pythagoras emphasised moderation, piety, respect for elders and of the state, and advocated a monogamous family structure. The Croton Council appointed him to official positions. Among others Pythagoras was in charge of education in the city. His influence as political reformer reputedly extended to other Greek colonies in southern Italy and in Sicily. Pythagoras died shortly after an arson attack on the Pythagorean meeting place in Croton..
The anti-Pythagorean attacks in were headed by Cylon of Croton.
According to surviving sources by the Neopythagorean philosopher Nicomachus, Philolaus was the successor of Pythagoras. According to Cicero (De Oratore III 34.139), Philolaus was teacher of Archytas.. According to the Neoplatonist philosopher Iamblichus, Archytas in turn became the head of the Pythagorean school about a century after the Pythagoras' death. Philolaus, Eurytus and Xenophilus are identified by Aristoxenus as the teachers of the last generation of Pythagoreans.
The akousmatikoi were superseded in the 4th century BC as a significant mendicant school of philosophy by the Cynics. Mathēmatikoi philosophers were in the 4th century BC absorbed into the Platonic Academy of Speusippus, Xenocrates and Polemon. As a philosophic tradition, Pythagoreanism was revived in the 1st century BC, giving rise to Neopythagoreanism. The worship of Pythagoras continued in Italy in the two intervening centuries. As a religious community Pythagoreans appear to have survived as part of, or deeply influenced, the Bacchic and Orphism.
Today, Pythagoras is mostly remembered for his mathematical ideas, and by association with the work early Pythagoreans did in advancing mathematical concepts and theories on harmonic musical intervals, the definition of numbers, proportion and mathematical methods such as arithmetic and geometry. The mathēmatikoi philosophers claimed that numbers were at the heart of everything and constructed a new view of the cosmos. In the mathēmatikoi tradition of Pythagoreanism the Earth was removed from the center of the universe. The mathēmatikoi believed that the Earth, along with other celestial bodies, orbited around a central fire. This, they believed, constituted a celestial harmony.
Early-Pythagorean philosophers such as Philolaus and Archytas held the conviction that mathematics could help in addressing important philosophical problems.. In Pythagoreanism numbers became related to intangible concepts. The one was related to the intellect and being, the two to thought, the number four was related to justice because 2 * 2 = 4 and equally even. A dominant symbolism was awarded to the number three, Pythagoreans believed that the whole world and all things in it are summed up in this number, because end, middle and beginning give the number of the whole. The triad had for Pythagoreans an ethical dimension, as the goodness of each person was believed to be threefold: prudence, drive and good fortune..
Pythagoreans thought numbers existed "outside of human minds" and separate from the world. They had many Mysticism and magical interpretations of the roles of numbers in governing existence.
Pythagoras is credited with discovering that the most harmonious musical intervals are created by the simple numerical ratio of the first four natural numbers which derive respectively from the relations of string length: the octave (1/2), the fifth (2/3) and the fourth (3/4). The sum of those numbers 1 + 2 + 3 + 4 = 10 was for Pythagoreans the perfect number, because it contained in itself "the whole essential nature of numbers". Werner Heisenberg has called this formulation of musical arithmetic as "among the most powerful advances of human science" because it enables the measurement of sound in space..
Pythagorean tuning is a system of musical tuning in which the of all intervals are based on the ratio .Bruce Benward and Marilyn Nadine Saker (2003). Music: In Theory and Practice, seventh edition, 2 vols. (Boston: McGraw-Hill). Vol. I: p. 56. . This ratio, also known as the "pure" perfect fifth, is chosen because it is one of the most consonant and easiest to tune by ear and because of importance attributed to the integer 3. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions."Kenneth Sylvan Guthrie, David R. Fideler (1987). The Pythagorean Sourcebook and Library: An Anthology of Ancient Writings which Relate to Pythagoras and Pythagorean Philosophy, p.24. Red Wheel/Weiser. .
The fact that mathematics could explain the human sentimental world had a profound impact on the Pythagorean philosophy. Pythagoreanism became the quest for establishing the fundamental essences of reality. Pythagorean philosophers advanced the unshakable belief that the essence of all things are numbers and that the universe was sustained by harmony. According to ancient sources music was central to the lives of those practicing Pythagoreanism. They used medicines for the purification ( Catharsis) of the body and, according to Aristoxenus, music for the purification of the soul. Pythagoreans used different types of music to arouse or calm their souls, and certain stirring songs could have notes that existed in the same ratio as the "distances of the heavenly bodies from the centre of" Earth.
Unity and harmony is extended to all the opposites, which descent from the so-called Pythagorean "Table of ten Opposites", mentioned by Aristotle. Supreme opposites are the following ten couples: limit-unlimited, odd-even, one-many, right-left, male-female, rest-motion, straight-curved, light-darkness, good-evil, and square-oblong.
Aristotle recorded in the 4th century BC on the Pythagorean astronomical system:
It is not known whether Philolaus believed Earth to be round or flat,, citing but he did not believe the earth rotated, so that the Counter-Earth and the Central Fire were both not visible from Earth's surface, or at least not from the hemisphere where Greece was located. But the conclusion of Pythagorean philosophers that the universe is not geocentric was not based on empirical observation. Instead, as Aristotle noted, the Pythagorean view of the astronomical system was grounded in a fundamental reflection on the value of individual things and the hierarchical order of the universe.
Pythagoreans believed in a musica universalis. They reasoned that stars must produce a sound because they were large swiftly moving bodies. Pythagoreans also determined that stars revolved at distances and speeds that were proportional to each other. They reasoned that because of this numerical proportion the revolution of the stars produced a harmonic sound. The early-Pythagorean philosopher Philolaus argued that the structure of the cosmos was determined by the musical numerical proportions of the diatonic octave, which contained the fifth and fourth harmonic intervals.
However, the teaching most securely identified with Pythagoras is metempsychosis, or the "transmigration of souls", which holds that every soul is immortal and, upon death, enters into a new body. Pythagorean metempsychosis resembles the teachings of the Orphics, although its version contains substantial differences. Unlike the Orphics, who considered metempsychosis a cycle of grief that could be escaped by attaining liberation from it, Pythagoras seems to postulate an eternal, endless reincarnation where subsequent lives would not be conditioned by any action done in the previous.
Pythagoreans believed that human beings were animals, but with an advanced intellect and therefore humans had to purify themselves through training. Through purification humans could join the psychic force that pervaded the cosmos. Pythagoreans reasoned that the logic of this argument could not be avoided by killing an animal painlessly. The Pythagoreans also thought that animals were sentient and minimally rational.. The arguments advanced by Pythagoreans convinced numerous of their philosopher contemporaries to adopt a vegetarian diet. The Pythagorean sense of kinship with non-humans positioned them as a counterculture in the dominant meat-eating culture. The philosopher Empedocles is said to have refused the customary blood sacrifice by offering a substitute sacrifice after his victory in a horse race in Olympia.
Late-Pythagorean philosophers were absorbed into the Platonic school of philosophy and in the 4th century BC the head of the Platonic Academy Polemon included vegetarianism in his concept of living according to nature. In the 1st century AD Ovid identified Pythagoras as the first opponent to meat-eating. But the fuller argument Pythagoreans advanced against the maltreatment of animals did not sustain. Pythagoreans had argued that certain types of food arouse the passions and hindered spiritual ascent. Thus Porphyry would rely on the teachings of the Pythagoreans when arguing that abstinence from eating meat for the purpose of spiritual purification should be practiced only by philosophers, whose aim was to reach a divine state.
Many of the surviving texts of women Pythagorean philosophers are part of a collection, known as pseudoepigrapha Pythagorica, which was compiled by Neopythagoreans in the 1st or 2nd century. Some surviving fragments of this collection are by early-Pythagorean women philosophers, while the bulk of surviving writings are from late-Pythagorean women philosophers who wrote in the 4th and 3rd century BC. Female Pythagoreans are some of the first female philosophers from which texts have survived.
Theano of Croton, the wife of Pythagoras, is considered a major figure in early-Pythagoreanism. She was noted as distinguished philosopher and in the lore that surrounds her, is said to have taken over the leadership of the school after his death. Text fragments have also survived from women philosophers of the late-Pythagorean period. These include Perictione I, Perictione II, Aesara of Lucania and Phintys of Sparta.
Scholars believe that Perictione I was an Athenian and contemporary of Plato, because in On the Harmony of Woman she wrote in Ionic Greek and used the same terms of virtues as Plato had done in his Republic: andreia, sophrosyne, dikaiosyne and sophia. In On the Harmony of Woman Perictione I outlines the condition that enable women to nurture wisdom and self-control. These virtues will, according to Perictione I, bring "worthwhile things" for a woman, her husband, her children, the household and even the city "if, at any rate, such a woman should govern cities and tribes". Her assertion that a wife should remain devoted to her husband, regardless of his behavior, has been interpreted by scholars as a pragmatic response to the legal rights of women in Athens.
Aristotle in the 4th century BC rejected mathematics as a tool for investigation and understanding of the world. He believed that numbers constituted simply a quantitative determinant and had no ontological value. Aristotle's discussion of Pythagorean philosophy is difficult to interpret, because he had little patience for Pythagorean philosophic arguments, and Pythagoreanism does not fit with his philosophic doctrine. In On the Heavens, Aristotle refuted the Pythagorean doctrine on the harmony of the spheres. Nevertheless, he wrote a treatise on the Pythagoreans of which only fragments survive, in which he treats Pythagoras as a wonder-working religious teacher.
Neopythagoreans combined Pythagorean teachings with Platonism, Peripatetic, Aristotelianism and Stoicism philosophic traditions. Two tendencies within Neopythagorean philosophy emerged, one that owed much to Stoic monism and another that relied on Platonic dualism. Neopythagoreans refined the idea of God and located him beyond the finite so that God could not come into contact with anything corporeal. Neopythagoreans insisted on a spiritual worship of God and that life had to be purified through abstinence.
Neopythagoreans manifested a strong interest in numerology and the superstitious aspects of Pythagoreanism. They combined this with the teachings of Plato's philosophic successors. Neopythagorean philosophers engaged in the common ancient practice of ascribing their doctrines to the designated founder of their philosophy and by crediting their doctrines to Pythagoras himself, they hoped to gain authority for their views.
Early Christian theologians, such as Clement of Alexandria, adopted the ascetic doctrines of the neopythagoreans. The moral and ethical teachings of Pythagorean influenced early Christianity and assimilated into early Christian texts. The Sextou gnomai ( Sentences of Sextus), a Hellenistic Pythagorean text modified to reflect a Christian viewpoint, existed from at least the 2nd century and remained popular among Christians well into the Middle Ages. The Sentences of Sextus consisted of 451 sayings or principles, such as injunctions to love the truth, to avoid the pollution of the body with pleasure, to shun flatterers and to let one's tongue be harnessed by one's mind. The contents of the Sentences of Sextus was attributed by Iamblichus, the 1st century biographer of Pythagoras, to Sextus Pythagoricus. The assertion was repeated subsequently by Saint Jerome. In the 2nd century many of the Sentences of Sextus were cited by Plutarch as Pythagorean aphorisms. The Sentences of Sextus were translated into Syriac language, Latin and Arabic, then the written language of both Muslims and Jews, but only in the Latin world did they become a guide to daily life that was widely circulated..
In the Middle Ages studies and adaptations of Timaeus solidified the view that there was a numerical explanation for proportion and harmony among learned men. Pythagoreanism, as mediated in Plato's Timaeus, spurred increasingly detailed studies of symmetry and harmony. Intellectuals pondered how knowledge of the geometry in which God had arranged the universe could be applied to life. By the 12th century Pythagorean numerological concepts had become a universal language in medieval Europe and were no longer recognised as Pythagorean. Writers such as Thierry of Chartres, William of Conches and Alexander Neckham referenced classical writers that had discussed Pythagoreanism, including Cicero, Ovid and Pliny, leading them to believe that mathematics was the key to understanding astronomy and nature. Another important text on Pythagorean numerology was Boethius's De arithmetica, which was widely reproduced in the West. Boethius had relied on Nicomachus's writings as a source of Pythagoreanism..
The 11th-century Byzantine professor of philosophy Michael Psellus popularised Pythagorean numerology in his treatise on theology, arguing that Plato was the inheritor of the Pythagorean secret. Psellus also attributed arithmetical inventions by Diophantus to Pythagoras. Psellus thought to reconstruct Iamblichus' 10 book encyclopedia on Pythagoreanism from surviving fragments, leading to the popularisation of Iamblichus' description of Pythagorean physics, ethics and theology at the Byzantine court. Psellus was reputably in the possession of the Hermetica, a set of texts thought to be genuinely antique and which would be prolifically reproduced in the late Middle Ages. Manuel Bryennios introduced Pythagorean numerology to Byzantine music with his treatise Harmonics. He argued that the octave was essential in attaining perfect harmony..
In the Jewish communities the development of the Kabbalah as esoteric doctrine became associated with numerology. It was only in the 1st century that Philo of Alexandria, developed a Jewish Pythagoreanism. In the 3rd century Hermippus popularised the belief that Pythagoras had been the basis for establishing key dates in Judaism. In the 4th century this assertion was further developed by Aristobulus. The Jewish Pythagorean numerology developed by Philo held that God as the unique One was the creator of all numbers, of which seven was the most divine and ten the most perfect. The medieval edition of the Kabbalah focused largely on a cosmological scheme of creation, in reference to early Pythagorean philosophers Philolaus and Empedocles and helped to disseminate Jewish Pythagorean numerology.
Besides the enthusiasm that developed in the Latin and Byzantine worlds in the Middle Ages for Pythagorean numerology, the Pythagorean tradition of perfect numbers inspired profound scholarship in mathematics. In the 13th century Leonardo of Pisa, better known as Fibonacci, published the Libre quadratorum ( The Book of Squares). Fibonacci had studied scripts from Egypt, Syria, Greece and Sicily, and was learned in Hindu, Arabic and Greek methodologies. Using the Hindu–Arabic numeral system instead of the Roman numerals, he explored numerology as it had been set forth by Nicomachus. Fibonacci observed that square numbers always arise through the addition of consecutive odd numbers starting with unity. Fibonacci put forward a method of generating sets of three square numbers that satisfied the relationship first attributed to Pythagoras by Vitruvius, that . This equation is now known as the Pythagorean triple..
Although the concept of the quadrivium originated with Archytas in the 4th century BC and was a familiar concept among academics in the antiquity, it was attributed as Pythagorean in the 5th century by Proclus. According to Proclus, Pythagoreanism divided all mathematical sciences into four categories: arithmetic, music, geometry and astronomy. Boethius developed this theory further, arguing that a fourfold path led to the attainment of knowledge. Arithmetic, music, geometry and astronomy went on to become the essential parts of in medieval and universities. In the 12th century Pythagoras was credited by Hugh of Saint Victor with having written a book on quadrivium. The role of harmony had its roots in the triadic thinking of Plato and Aristotle and included the trivium of grammar, rhetoric and dialectic. From the 9th century onwards, both the quadrivium and the trivium were commonly taught in schools and the newly emerging universities. They came to be known as the Seven liberal arts.
In the early 6th century the Roman philosopher Boethius popularised Pythagorean and Platonism conceptions of the universe and expounded the supreme importance of ratio. The 7th century Bishop Isidore of Seville expressed his preference for the Pythagorean vision of a universe governed by the mystical properties of certain numbers, over the newly emerging notion that knowledge could be built through deductive proofs. Isidore relied on the arithmetic of Nicomachus, who had fashioned himself as heir of Pythagoras, and took things further by studying the etymology of the name of each number. The 12th century theologian Hugh of Saint Victor found Pythagorean numerology so alluring that he set out to explain the human body entirely in numbers. In the 13th century the fashion for numerology dwindled. The Christian scholar Albertus Magnus rebuked the preoccupation with Pythagorean numerology, arguing that nature could not only be explained in terms of numbers. Plato's Timaeus became a popular source on the mystical and cosmological symbolism Pythagoreans attributed to numbers. The preoccupation for finding a numerical explanation for proportion and harmony culminated in the French cathedrals of the 11th, 12th and 13th century.
Arabic translations of the Golden Verses were produced in the 11th and 12th centuries. In the Medieval Islamic world a Pythagorean tradition took hold, whereby spheres or stars produced music. This doctrine was further developed by Ikhwan al-Safa and al-Kindi, who pointed to the similarity between the harmony of music and the harmony of the soul. But Islamic philosophers such as al-Farabi and Ibn Sina vehemently rejected this Pythagorean doctrine. in Kitab al-Musiqa al-Kabir Al-Farabi rejected the notion of celestial harmony on the grounds that it was "plainly wrong" and that it was not possible for the heavens, orbs and stars to emit sounds through their motions.
The four books of the Corpus Areopagiticum or Corpus Dionysiacum ( The Celestrial Hierarchy, The Ecclesiastical Hierarchy, On Divine Names and The Mystical Theology) by Pseudo-Dionysius the Areopagite became enormously popular during the Middle Ages in the Byzantine world, where they had first been published in the 1st century, but also the Latin world when they were translated in the 9th century. The division of the universe into heaven, earth and hell, and the 12 orders of heaven were credited as Pythagoras' teachings by an anonymous biographer, who was quoted in the treatise of the 9th century Byzantine patriarch Photius. The 13th century astronomer and mathematician John of Sacrobosco in turn credited Pseudo-Dionysius when discussing the twelve signs of the zodiac.
In the Middle Ages various classical texts that discussed Pythagorean ideas were reproduced and translated. Plato's Timaeus was translated and republished with commentary in the Arab and Jewish worlds. In the 12th century the study of Plato gave rise to a vast body of literature explicating the glory of God as it reflected in the orderliness of the universe. Writers such as Thierry of Chartres, William of Conches and Alexander Neckham referred not only to Plato but also to other classical authors that had discussed Pythagoreanism, including Cicero, Ovid and Pliny. William of Conches argued that Plato was an important Pythagorean. In this medieval Pythagorean understanding of Plato, God was a craftsman when he designed the universe.
In the 16th century Vincenzo Galilei challenged the prevailing Pythagorean wisdom about the relationship between pitches and weights attached to strings. Vincenzo Galilei, the father of Galileo Galilei, engaged in an extended public exchange with his former teacher Zarlino. Zarlino supported the theory that if two weights in the ratio of 2 to 1 were attached to two strings, the pitches generated by the two strings would produce the octave. Vincenzo Galilei proclaimed that he had been a committed Pythagorean, until he "ascertained the truth by means of experiment, the teacher of all things". He devised an experiment which showed that the weights attached to the two strings needed to increase as the square of the string length. This public challenge to prevailing numerology in musical theory triggered an experimental and physical approach to acoustics in the 17th century. Acoustics emerged as a mathematical field of music theory and later an independent branch of physics. In the experimental investigation of sound phenomena, numbers had no symbolic meaning and were merely used to measure physical phenomena and relationships such as frequency and vibration of a string.
Many of the most eminent 17th century natural philosophers in Europe, including Francis Bacon, Descartes, Isaac Beeckman, Kepler, Mersenne, Stevin and Galileo, had a keen interest in music and acoustics. By the late 17th century it was accepted that sound travels like a wave in the air at a finite speed and experiments to establish the speed of sound were carried out by philosophers attached to the French Academy of Sciences, the Accademia del Cimento and the Royal Society.
At the height of the Scientific Revolution, as Aristotelianism declined in Europe, the ideas of early-Pythagoreanism were revived. Mathematics regained importance and influenced philosophy as well as science. Mathematics was used by Kepler, Galileo, Descartes, Huygens and Isaac Newton to advance physical laws that reflected the inherent order of the universe. Twenty-one centuries after Pythagoreas had taught his disciples in Italy, Galileo announced to the world that "the great book of nature" could only be read by those who understood the language of mathematics. He set out to measure whatever is measurable, and to render everything measurable that is not.. The Pythagorean concept of cosmic harmony deeply influenced western science. It served as the basis for Kepler's Harmonices Mundi and Leibniz's pre-established harmony. Albert Einstein believed that through this pre-established harmony, the productive unison between the spiritual and material world was possible.
The Pythagorean belief that all bodies are composed of numbers and that all properties and causes could be expressed in numbers, served as the basis for a mathematization of science. This mathematization of the physical reality climaxed in the 20th century. The pioneer of physics Werner Heisenberg argued that "this mode of observing nature, which led in part to a true dominion over natural forces and thus contributes decisively to the development of humanity, in an unforeseen manner vindicated the Pythagorean faith".
|
|