The family Procellariidae is a group of that comprises the , the , the , the prions, and the . This family is part of the bird order Procellariiformes (or tubenoses), which also includes the and the .
The procellariids are the most numerous family of tubenoses, and the most diverse. They range in size from the with a wingspan of around , that are almost as large as the albatrosses, to the diving petrels with a wingspan of around that are similar in size to the or dovekies in the family Alcidae. Male and female birds are identical in appearance. The plumage colour is generally dull, with blacks, whites, browns and greys. The birds feed on fish, squid and crustacea, with many also taking Discards and carrion. Whilst agile swimmers and excellent in water, petrels have weak legs and can only shuffle on land, with the giant petrels of the genus Macronectes being the only two species that are capable of proper terrestrial locomotion. All species are accomplished long-distance foragers, and many undertake long equator bird migration. They are seabird colony, exhibiting long-term mate fidelity and philopatry. In all species, a single white egg is laid each breeding season. The parents take it in turns to incubate the egg and to forage for food. The feeding area can be at a great distance from the nest site. The incubation times and chick-rearing periods are exceptionally long compared to other birds.
Many procellariids have breeding populations of over several million pairs; others number fewer than 200 birds. Humans have traditionally exploited several species of fulmar and shearwater (known as muttonbirds) for food, fuel, and bait, a practice that continues in a controlled fashion today. Several species are threatened by introduced species attacking adults and chicks in breeding colonies and by long-line fisheries.
Procellariidae is one of families that make up the order Procellariiformes. Before the introduction of molecular phylogenetics, the traditional arrangement was to divide the Procellariiformes into a set of four families: Diomedeidae containing the albatrosses, Hydrobatidae containing all the storm petrels, Pelecanoididae containing the and Procellariidae containing the petrels, shearwaters and fulmars.
The molecular evidence suggests that the albatrosses were the first to diverge from the ancestral stock, and the Oceanitidae next, with the procellariids and northern storm petrels splitting most recently.
Within the procellariid family, a genetic analysis based on the cytochrome b gene published in 2004 indicated that the genus Puffinus contained two distinct clades and was polyphyletic. The genus was therefore split and a group of species moved into the resurrected genus Ardenna. The other genera within the family were found to be monotypic but the relationships between the genera remained unclear. This changed when a multigene genetic study published in 2021 provided a genus-level phylogeny of the family.
There are 99 species of procellariid in 16 genus. The family has usually been broken up into four fairly distinct groups; the , the , the prions, and the . With the inclusion of the diving petrels there are now five main groups.
The technique of bird flight among procellariids depends on foraging methods. Compared to an average bird, all procellariids have a high aspect ratio (meaning their wings are long and narrow) and a heavy wing loading. Therefore, they must maintain a high speed in order to remain in the air. Most procellariids use two techniques to do this, namely, dynamic soaring and slope soaring. Dynamic soaring involves gliding across wave fronts, thus taking advantage of the vertical wind gradient and minimising the effort required to stay in the air. Slope soaring is more straightforward: the procellariid turns to the wind, gaining height, from where it can then glide back down to the sea. Most procellariids aid their flight by means of flap-glides, where bursts of flapping are followed by a period of gliding; the amount of flapping dependent on the strength of the wind and the choppiness of the water. Because of the high speeds required for flight, procellariids need to either run or face into a strong wind in order to take off.
The giant petrels share with the albatrosses an adaptation known as a shoulder-lock, a sheet of tendon that locks the wing when fully extended, allowing the wing to be kept up and out without any muscle effort. Gadfly petrels often feed on the wing, snapping prey without landing on the water. The flight of the smaller prions is similar to that of the , being highly erratic and involving weaving and even looping the loop. The wings of all species are long and stiff. In some species of shearwater the wings are used to power the birds underwater while diving for prey. Their heavier wing loadings, in comparison with surface-feeding procellariids, allow these shearwaters to achieve considerable depths (below in the case of the short-tailed shearwater).
Procellariids generally have weak legs that are set back, and many species move around on land by resting on the breast and pushing themselves forward, often with the help of their wings. The exceptions to this are the two species of giant petrel, which have strong legs used when they feed on land.
Many procellariids undertake long annual bird migration in the non-breeding season. Southern species of shearwater such as the sooty shearwater and short-tailed shearwater, breeding on islands off Australia, New Zealand and Chile, undertake transequatorial migrations of millions of birds up to the waters off Alaska and back each year during the austral winter. from the North Atlantic also undertake transequatorial migrations from Western Europe and North America to the waters off Brazil and Argentina in the South Atlantic. The mechanisms of navigation are poorly understood, but displacement experiments where individuals were removed from colonies and flown to far-flung release sites have shown that they are able to home in on their colonies with remarkable precision. A Manx shearwater released in Boston returned to its colony in Skomer, Wales within 13 days, a distance of 5,150 kilometres (3,200 mi). The gadfly petrels in the genus Pterodroma, breeding in warm temperate locations, also move immense distances to feed; nesting on Bermuda regularly travel as far as the seas off Newfoundland, western Ireland and the Bay of Biscay, with individuals covering in a year.
The majority of species are surface feeders, obtaining food that has been pushed to the surface by other predators or currents, or have floated in death. Among the surface feeders some, principally the gadfly petrels, can obtain food by dipping from flight, while most of the rest feed while sitting on the water. These surface feeders are dependent on their prey being close to the surface, and for this reason procellariids are often found in association with other predators or oceanic convergences. Studies have shown strong associations between many different kinds of , including wedge-tailed shearwaters, and and tuna, which push shoaling fish up towards the surface. The gadfly petrels and the Kerguelen petrel mainly feed at night. In so doing they can take advantage of the nocturnal migration of cephalopods and other food species towards the surface.
The fulmarine petrels are generalists, which for the most part take many species of fish and crustacea. The giant petrels, uniquely for Procellariiformes, will feed on land, eating the carrion of other seabirds and pinniped. They will also attack the chicks of other seabirds. The diet of the giant petrels varies according to sex, with the females taking more krill and the males more carrion. All the fulmarine petrels readily feed on fisheries discards at sea, a habit that has been implicated in (but not proved to have caused) the expansion in range of the northern fulmar in the Atlantic.
The three larger prion species have bills filled with lamellae, which act as filters to sift zooplankton from the water. Water is forced through the lamellae and small prey items are collected. This technique is often used in conjunction with a method known as hydroplaning where the bird dips its bill beneath the surface and propels itself forward with wings and feet as if walking on the water.
The diving petrels and many of the shearwaters are proficient divers. While it has long been known that they regularly dive from the surface to pursue prey, using their wings for propulsion, the depth that they are able to dive to was not appreciated (or anticipated) until scientists began to deploy maximum-depth recorders on foraging birds. Studies of both long-distance migrants such as the sooty shearwater and more sedentary species such as the black-vented shearwater have shown maximum diving depths of and . Supplementary Material. Tropical shearwaters, such as the wedge-tailed shearwater and the Sargasso shearwater, also dive in order to hunt, making the shearwaters the only tropical seabirds capable of exploiting that ecological niche (all other tropical seabirds feed close to the surface). Many other species of procellariid, from white-chinned petrels to slender-billed prions, dive to a couple of metres below the surface, though not as proficiently or as frequently as the shearwaters.
Most seabirds are colonial, and the reasons for colonial behaviour are assumed to be similar, if incompletely understood by scientists. Procellariids for the most part have weak legs and are unable to easily take off, making them highly vulnerable to predators. Most procellariid colonies are located on islands that have historically been free of mammals; for this reason some species cannot help but be colonial as they are limited to a few locations to breed. Even species that breed on continental Antarctica, such as the Antarctic petrel, are forced by habitat preference (snow-free north-facing rock) to breed in just a few locations.
Most procellariids' nests are in burrows or on the surface on open ground, with a smaller number nesting under the cover of vegetation (such as in a forest). All the fulmarine petrels bar the snow petrel nest in the open, the snow petrel instead nesting inside natural crevices. Of the rest of the procellariids the majority nest in burrows or crevices, with a few tropical species nesting in the open. There are several reasons for these differences. The fulmarine petrels are probably precluded from burrowing by their large size (the crevice-nesting snow petrel is the smallest fulmarine petrel) and the high latitudes they breed in, where frozen ground is difficult to burrow into. The smaller size of the other species, and their lack of agility on land, mean that even on islands free from mammal predators they are still vulnerable to , and other avian predators, something the aggressive stomach oil-spitting fulmars are not. The chicks of all species are vulnerable to predation, but the chicks of fulmarine petrels can defend themselves in a similar fashion to their parents. In the higher latitudes there are thermal advantages to burrow nesting, as the temperature is more stable than on the surface, and there is no wind-chill to contend with. The absence of skuas, gulls and other predatory birds on tropical islands is why some shearwaters and two species of gadfly petrel (Kermadec petrel and the herald petrel) can nest in the open. This has the advantages of reducing competition with burrow nesters from other species and allowing open-ground nesters to nest on islets without soil for burrowing. Procellariids that burrow in order to avoid predation almost always attend their colonies nocturnal animal in order to reduce predation as well.
Procellariids display high levels of philopatry, exhibiting both natal philopatry and site fidelity. Natal philopatry, the tendency of a bird to breed close to where it hatched, is strong among all the Procellariiformes. The evidence for natal philopatry comes from several sources, not the least of which is the existence of several procellariid species that are endemic to a single island. The study of mitochondrial DNA provides evidence of restricted gene flow between different colonies, and has been used to show philopatry in . Bird ringing provides compelling evidence of philopatry; a study of Cory's shearwaters nesting near Corsica found that nine out of 61 male chicks that returned to breed at their natal colony actually bred in the burrow they were raised in. This tendency towards philopatry is stronger in some species than others, and several species readily prospect potential new colony sites and colonise them. It is hypothesised that there is a cost to dispersing to a new site, the chance of not finding a mate of the same species, that selects against it for rarer species, whereas there is probably an advantage to dispersal for species that have colony sites that change dramatically during periods of Glacial motion. There are differences in the tendency to disperse based on sex, with females being more likely to breed away from the natal site.
The procellariids lack the elaborate breeding dances of the albatrosses, in no small part due to the tendency of most of them to attend colonies at night and breed in burrows, where visual displays are useless. The fulmarine petrels, which nest on the surface and attend their colonies Diurnality, do use a repertoire of stereotyped ethology such as cackling, preening, head waving and nibbling, but for most species courtship interactions are limited to some billing (rubbing the two bills together) in the burrow and the vocalisations made by all species. The calls serve a number of functions: they are used territorially to protect burrows or territories and to call for mates. Each call type is unique to a particular species and indeed it is possible for procellariids to identify the sex of the bird calling. It may also be possible to assess the quality of potential mates; a study of found a link between the rhythm and duration of calls and the body mass of the bird. The ability of an individual to recognise its mate has been demonstrated in several species.
Procellariids begin to attend their nesting colony around one month prior to laying. Males will arrive first and attend the colony more frequently than females, partly in order to protect a site or burrow from potential competitors. Prior to laying there is a period known as the pre-laying exodus in which both the male and female are away from the colony, building up reserves in order to lay and undertake the first incubation stint respectively. This pre-laying exodus can vary in length from 9 days (as in the Cape petrel) to around 50 days in . All procellariids lay a single white egg per pair per breeding season, in common with the rest of the Procellariiformes. The egg is large compared to that of other birds, weighing 6–24% of the female's weight. Immediately after laying the female goes back to sea to feed while the male takes over incubation. Incubation duties are shared by both sexes in shifts that vary in length between species, individuals and the stage of incubation. The longest recorded shift was 29 days by a Murphy's petrel from Henderson Island; the typical length of a gadfly petrel stint is between 13 and 19 days. Fulmarine petrels, shearwaters and prions tend to have shorter stints, averaging between 3 and 13 days. Incubation takes a long time, from 40 days for the smaller species (such as prions) to around 55 days for the larger species. The incubation period is longer if eggs are abandoned temporarily; procellariid eggs are resistant to chilling and can still hatch after being left unattended for a few days.
After hatching the chick is brooded by a parent until it is large enough to thermoregulation efficiently, and in some cases defend itself from predation. This guard stage lasts a short while for burrow-nesting species (2–3 days) but longer for surface nesting (around 16–20 days) and (20–30 days). After the guard stage both parents feed the chick. In many species the parent's foraging strategy alternates between short trips lasting 1–3 days and longer trips of 5 days. The shorter trips, which are taken over the continental shelf, benefit the chick with faster growth, but longer trips to more productive pelagic zone feeding grounds are needed for the parents to maintain their own body condition. The meals are composed of both prey items and stomach oil, an food energy-rich food that is lighter to carry than undigested prey items. This oil is created in a stomach organ known as a proventriculus from digested prey items, and gives procellariids and other Procellariiformes their distinctive musty smell. Chick development is quite slow for , with fledging taking place at around two months after hatching for the smaller species and four months for the largest species. The chicks of some species are abandoned by the parents; parents of other species continue to bring food to the nesting site after the chick has left. Chicks put on weight quickly and some can outweigh their parents, although they will slim down before they leave the nest. All procellariid chicks fledge by themselves, and there is no further parental care after fledging. Life expectancy of Procellariidae is between 15 and 20 years; the oldest recorded member was a northern fulmar that was over 50 years.
The most pressing threat for many species, particularly the smaller ones, comes from species introduced to their colonies. Procellariids overwhelmingly breed on islands away from land predators such as mammals, and for the most part have lost the defensive adaptations needed to deal with them (with the exception of the oil-spitting fulmarine petrels). The introduction of mammal predators such as , rats, and mice can have disastrous results for island tameness seabirds. These predators can either directly attack and kill breeding adults, or, more commonly, attack eggs and chicks. Burrowing species that leave their young unattended at a very early stage are particularly vulnerable to attack. Studies on grey-faced petrels breeding on New Zealand's Whale Island (Moutohora) have shown that a population under heavy pressure from will produce virtually no young during a breeding season, whereas if the rats are controlled (through the use of poison), breeding success is much higher. That study highlighted the role that non-predatory introduced species can play in harming seabirds; introduced on the island caused little damage to the petrels, other than damaging their burrows, but they acted as a food source for the rats during the non-breeding season, which allowed rat numbers to be higher than they otherwise would be, resulting in more predators for the petrels to contend with. Interactions with introduced species can be quite complex. Gould's petrels breed only on two islands, Cabbage Tree Island and Boondelbah Island off Port Stephens (New South Wales). Introduced rabbits destroyed the forest understory on Cabbage Tree Island; this both increased the vulnerability of the petrels to natural predators and left them vulnerable to the sticky fruits of the birdlime tree ( Pisonia umbellifera), a native plant. In the natural state these fruits lodge in the understory of the forest, but with the understory removed the fruits fall to the ground where the petrels move about, sticking to their feathers and making flight impossible.
Larger species of procellariid face similar problems to the albatrosses with long-line fisheries. These species readily take offal from fishing boats and will steal bait from the long lines as they are being set, risking becoming snared on the hooks and drowning. In the case of the spectacled petrel this has led to the species undergoing a large decline and its listing as vulnerable. Diving species, most especially the shearwaters, are also vulnerable to gillnet fisheries. Studies of gill-net fisheries show that shearwaters (sooty and short-tailed) compose 60% of the seabirds killed by gill-nets in Japanese waters and 40% in Monterey Bay, California in the 1980s, with the total number of shearwaters killed in Japan being between 65,000 and 125,000 per annum over the same study period (1978–1981).
Procellariids are vulnerable to other threats as well. Ingestion of plastic flotsam is a problem for the family as it is for many other seabirds. Once swallowed, this plastic can cause a general decline in the fitness of the bird, or in some cases lodge in the gut and cause a blockage, leading to death by starvation. Procellariids are also vulnerable to general marine pollution, as well as oil spills. Some species, such as the Barau's petrel, the Newell's shearwater or the Cory's shearwater, which nest high up on large developed islands are victims of light pollution. Chicks that are fledging are attracted to streetlights and are unable to reach the sea. An estimated 20–40% of fledging Barau's petrels are attracted to the streetlights on Réunion.
Conservationists are working with governments and fisheries to prevent further declines and increase populations of endangered procellariids. Progress has been made in protecting many colonies where most species are most vulnerable. On 20 June 2001, the Agreement on the Conservation of Albatrosses and Petrels was signed by seven major fishing nations. The agreement lays out a plan to manage fisheries by-catch, protect breeding sites, promote conservation in the industry, and research threatened species. The developing field of island restoration, where introduced species are removed and native species and habitats restored, has been used in several procellariid recovery programmes. Invasive species such as rats, feral cats and pigs have been either removed or controlled in many remote islands in the tropical Pacific (such as the Northwestern Hawaiian Islands), around New Zealand (where island restoration was developed), and in the south Atlantic and . The grey-faced petrels of Whale Island (mentioned above) have been achieving much higher fledging successes after the introduced Norway rats were finally completely removed. At sea, procellariids threatened by long-line fisheries can be protected using techniques such as setting long-line bait at night, dying the bait blue, setting the bait underwater, increasing the amount of weight on lines and using bird scarers can all reduce the seabird by-catch. The Agreement on the Conservation of Albatrosses and Petrels came into force in 2004 and has been ratified by eight countries, Australia, Ecuador, New Zealand, Spain, South Africa, France, Peru and the United Kingdom. The treaty requires these countries to take specific actions to reduce by-catch and pollution and to remove introduced species from nesting islands.
Morphology and flight
Distribution and migration
Behaviour
Food and feeding
Breeding
Colonies
Mate and site fidelity
Breeding season
Relationship with humans
Exploitation
Threats and conservation
See also
Sources
External links
|
|