Product Code Database
Example Keywords: trousers -gloves $71-127
   » » Wiki: Pinaceae
Tag Wiki 'Pinaceae'.
Tag

The Pinaceae (), or pine family, are trees or shrubs, including many of the well-known conifers of commercial importance such as , , , piñons, , and . The family is included in the order , formerly known as . Pinaceae have distinctive cones with woody scales bearing typically two , and are supported as by both morphological trait and genetic analysis. They are the largest extant conifer family in species diversity, with between 220 and 250 species (depending on taxonomic opinion) in 11 genera,

(1998). 9781900347549, Royal Botanic Gardens, Kew.
and the second-largest (after ) in geographical range, found in most of the Northern Hemisphere, with the majority of the species in temperate climates, but ranging from subarctic to tropical. The family often forms the dominant component of , coastal, and . One species, , grows just south of the in Southeast Asia. Major centres of diversity are found in the mountains of , Mexico, central Japan, and .


Description
Members of the family Pinaceae are (rarely ) growing from tall, mostly (except the and ), , , with subopposite or whorled branches, and spirally arranged, linear (needle-like) leaves. The embryos of Pinaceae have three to 24 .

The female are large and usually woody, long, with numerous spirally arranged scales, and two winged on each scale. The male cones are small, long, and fall soon after pollination; pollen dispersal is by wind. Seed dispersal is mostly by wind, but some species have large seeds with reduced wings, and are dispersed by birds. Analysis of Pinaceae cones reveals how selective pressure has shaped the evolution of variable cone size and function throughout the family. Variation in cone size in the family has likely resulted from the variation of seed dispersal mechanisms available in their environments over time. All Pinaceae with seeds weighing less than 90 milligrams are seemingly adapted for wind dispersal. Pines having seeds larger than 100 mg are more likely to have benefited from adaptations that promote animal dispersal, particularly by birds. Pinaceae that persist in areas where are abundant do not seem to have evolved adaptations for bird dispersal.

Boreal conifers have many adaptions for winter. The narrow conical shape of northern conifers, and their downward-drooping limbs help them shed snow, and many of them seasonally alter their biochemistry to make them more resistant to freezing, called "hardening".

File:Floral Morphology and Anatomy of Picea sp. (Spruce).jpg|Floral Morphology and Anatomy of Picea sp. (Spruce) File:Vagamon Pine Forest.jpg|Cultivated pine forest in , India


Classification
Classification of the subfamilies and genera of Pinaceae has been subject to debate in the past. Pinaceae ecology, morphology, and history have all been used as the basis for methods of analyses of the family. An 1891 publication divided the family into two subfamilies, using the number and position of resin canals in the primary vascular region of the young taproot as the primary consideration. In a 1910 publication, the family was divided into two tribes based on the occurrence and type of long–short shoot dimorphism.

A more recent classification divided the subfamilies and genera based on the consideration of features of ovulate cone anatomy among extant and fossil members of the family. Below is an example of how the morphology has been used to classify Pinaceae. The 11 genera are grouped into four subfamilies, based on the microscopical anatomy and the morphology of the cones, pollen, wood, seeds, and leaves:

  • Subfamily ( ): cones are biennial, rarely triennial, with each year's scale-growth distinct, forming an umbo on each scale, the cone scale base is broad, concealing the seeds fully from (below the vessels) view, the seed is without resin vesicles, the seed wing holds the seed in a pair of claws, leaves have primary stomatal bands adaxial (above the xylem) or equally on both surfaces.
  • Subfamily ( ): cones are annual, without a distinct umbo, the cone scale base is broad, concealing the seeds fully from abaxial view, seed is without resin vesicles, blackish, the seed wing holds the seed loosely in a cup, leaves have primary stomatal bands adaxial (above the xylem) or equally on both surfaces.
  • Subfamily ( , , and ): cones are annual, without a distinct umbo, the cone scale base is broad, concealing the seeds fully from abaxial view, the seed is without resin vesicles, whitish, the seed wing holds the seed tightly in a cup, leaves have primary stomatal bands abaxial only.
  • Subfamily ( , , , , , and ): cones are annual, without a distinct umbo, the cone scale base is narrow, with the seeds partly visible in abaxial view, the seed has resin vesicles, the seed wing holds the seed tightly in a cup, leaves have primary stomatal bands abaxial only.


Phylogeny
A revised 2018 phylogeny places Cathaya as sister to the pines rather than in the Laricoidae subfamily with Larix and Pseudotsuga.

Multiple molecular studies indicate that in contrast to previous classifications placing it outside the conifers, may in fact be the sister group to the Pinaceae, with both lineages having diverged during the early-mid . This is known as the "gnepine" hypothesis.


Evolutionary history
The Pinaceae diverged from other conifer groups during the late ~313 million years ago. Various possible relatives have been reported from as early as the Late () The extinct conifer cone genus likely represent stem-group members of the Pinaceae, the first good records of which are in the Middle-Late , with abundant records during the across Eurasia. The oldest (descendant of the last common ancestor of all living species) member of Pinaceae is the cone , known from the Upper Jurassic (lower , 157.3-154.7 million years ago) of Scotland, which likely belongs to the pinoid grouping of the family. Pinaceae rapidly radiated during the . Members of the modern genera Pinus (pines), Picea (spruce) and Cedrus (cedar) first appear during the Early Cretaceous. The extinct Cretaceous genera and appear to be members of Abietoideae, while appears to be non-monophyletic, containing many disparately related members of Pinaceae. While Pinaceae, and indeed all of its subfamilies, substantially predate the break up of the super-continent , its distribution was limited to northern . During the Cenozoic, Pinaceae had higher rates of species turnover than Southern Hemisphere conifers, thought to be driven by range shifts in response to glacial cycles.


Defense mechanisms
External stresses on plants have the ability to change the structure and composition of . Common external stress that Pinaceae experience are and attack which often leads to tree death. In order to combat these stresses, trees need to adapt or evolve defenses against these stresses. Pinaceae have evolved myriad mechanical and chemical defenses, or a combination of the two, in order to protect themselves against antagonists. Pinaceae have the ability to up-regulate a combination of constitutive mechanical and to further their defenses.

Pinaceae defenses are prevalent in the bark of the trees. This part of the tree contributes a complex defensive boundary against external antagonists.Franceschi, V. R., P. Krokene, T. Krekling, and E. Christiansen. 2000. Phloem parenchyma cells are involved in local and distance defense response to fungal inoculation or bark-beetle attack in Norway spruce ( Pinaceae). American Journal of Botany 87:314-326. Constitutive and induced defenses are both found in the bark.


Constitutive defenses
Constitutive defenses are typically the first line of defenses used against antagonists and can include sclerified cells, lignified periderm cells, and secondary compounds such as and resins. Constitutive defenses are always expressed and offer immediate protection from invaders but could also be defeated by antagonists that have evolved adaptations to these defense mechanisms. One of the common secondary compounds used by Pinaceae are phenolics or polyphenols. These secondary compounds are preserved in of polyphenolic (PP) in the .


Induced defenses
Induced defense responses need to be activated by certain cues, such as herbivore damage or other biotic signals.

A common induced defense mechanism used by Pinaceae is resins. Resins are also one of the primary defenses used against attack. Resins are short term defenses that are composed of a complex combination of volatile - (C10) and (C15) and nonvolatile resin acids (C20). They are produced and stored in specialized secretory areas known as resin ducts, resin blisters, or resin cavities. Resins have the ability to wash away, trap, fend off antagonists, and are also involved in wound sealing. They are an effective defense mechanism because they have toxic and inhibitory effects on invaders, such as insects or pathogens. Resins could have developed as an evolutionary defense against attacks. One well researched resin present in Pinaceae is . Oleoresin had been found to be a valuable part of the defense mechanism against . They are found in secretory tissues in tree stems, roots, and leaves. Oleoresin is also needed in order to classify conifers.


Active research: methyl jasmonate
The topic of defense mechanisms within family Pinaceae is a very active area of study with numerous studies being conducted. Many of these studies use (MJ) as an antagonist. Methyl jasmonate is known to be able to induce defense responses in the stems of multiple Pinaceae species. It has been found that MJ stimulated the activation of PP cells and formation of xylem traumatic resin ducts (TD). These are structures that are involved in the release of phenolics and resins, both forms of defense mechanism.

File:Pinceae_Bishop_pine_prickle_cone_pine_pinus_muricata.jpg | Close up of bishop pine cones File:Pinaceae_Knobcone_Pine_Pinus_attenuata.jpg | Knobcone pine cone


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time