Panspermia () is the hypothesis that life exists throughout the universe, distributed by space dust, , , , and planetoids, as well as by spacecraft carrying unintended contamination by ,Forward planetary contamination like Tersicoccus phoenicis, that has shown resistance to methods usually used in Cleanroom: known as directed panspermia. The theory argues that life did not originate on Earth, but instead evolved somewhere else and seeded life as we know it.
Panspermia comes in many forms, such as radiopanspermia, lithopanspermia, and directed panspermia. Regardless of its form, the theories generally propose that microbes able to survive in outer space (such as certain types of bacteria or plant spores) can become trapped in Ejecta into space after collisions between planets and small solar system bodies that harbor life. This debris containing the lifeforms is then transported by meteors between bodies in a solar system, or even across solar systems within a galaxy. In this way, panspermia studies concentrate not on how life began but on methods that may distribute it within the Universe.A variation of the panspermia hypothesis is necropanspermia which astronomer Paul Wesson describes as follows: "The vast majority of organisms reach a new home in the Milky Way in a technically dead state … Resurrection may, however, be possible." Hoyle, F. and Wickramasinghe, N.C. (1981). Evolution from Space. Simon & Schuster, New York, and J.M. Dent and Son, London (1981), ch. 3 pp. 35–49.Wickramasinghe, J., Wickramasinghe, C. and Napier, W. (2010). Comets and the Origin of Life. World Scientific, Singapore. ch. 6 pp. 137–154. This point is often used as a criticism of the theory.
Panspermia is a Fringe science with little support amongst mainstream scientists. Critics argue that it does not answer the question of the origin of life but merely places it on another celestial body. It is further criticized because it cannot be tested experimentally. Historically, disputes over the merit of this theory centered on whether life is ubiquitous or emergent throughout the Universe. The theory maintains support today, with some work being done to develop mathematical treatments of how life might migrate naturally throughout the Universe. Its long history lends itself to extensive speculation and hoaxes that have arisen from meteoritic events.
In contrast, pseudo-panspermia is the well-supported hypothesis that many of the small Organic compound used for life originated in space, and were distributed to surfaces.
In the 1860s, there were three scientific developments that began to bring the focus of the scientific community to the problem of the origin of life. Firstly, the Kant-Laplace Nebular theory of solar system and planetary formation was gaining favor, and implied that when the Earth first formed, the surface conditions would have been inhospitable to life as we know it. This meant that life could not have evolved parallel with the Earth, and must have evolved at a later date, without biological precursors. Secondly, Charles Darwin's famous theory of evolution implied some elusive origin, because in order for something to evolve, it must start somewhere. In his Origin of Species, Darwin was unable or unwilling to touch on this issue. Third and finally, Louis Pasteur and John Tyndall experimentally disproved the (now superseded) theory of spontaneous generation, which suggested that life was constantly evolving from non-living matter and did not have a common ancestor, as suggested by Darwin's theory of evolution.
Altogether, these three developments in science presented the wider scientific community with a seemingly paradoxical situation regarding the origin of life: life must have evolved from non-biological precursors after the Earth was formed, and yet spontaneous generation as a theory had been experimentally disproved. From here, is where the study of the origin of life branched. Those who accepted Pasteur's rejection of spontaneous generation began to develop the theory that under (unknown) conditions on a primitive Earth, life must have gradually evolved from organic material. This theory became known as abiogenesis, and is the currently accepted one. On the other side of this are those scientists of the time who rejected Pasteur's results and instead supported the idea that life on Earth came from existing life. This necessarily requires that life has always existed somewhere on some planet, and that it has a mechanism of transferring between planets. Thus, the modern treatment of panspermia began in earnest.
Lord Kelvin, in a presentation to The British Association for the Advancement of Science in 1871, proposed the idea that similarly to how seeds can be transferred through the air by winds, so can life be brought to Earth by the infall of a life-bearing meteorite. He further proposed the idea that life can only come from life, and that this principle is invariant under philosophical uniformitarianism, similar to how matter can neither be created nor destroyed. This argument was heavily criticized because of its boldness, and additionally due to technical objections from the wider community. In particular, Johann Zollner from Germany argued against Kelvin by saying that organisms carried in meteorites to Earth would not survive the descent through the atmosphere due to friction heating.
The arguments went back and forth until Svante Arrhenius gave the theory its modern treatment and designation. Arrhenius argued against abiogenesis on the basis that it had no experimental foundation at the time, and believed that life had always existed somewhere in the Universe. He focused his efforts of developing the mechanism(s) by which this pervasive life may be transferred through the Universe. At this time, it was recently discovered that solar radiation can exert pressure, and thus force, on matter. Arrhenius thus concluded that it is possible that very small organisms such as bacterial spores could be moved around due to this radiation pressure.
At this point, panspermia as a theory now had a potentially viable transport mechanism, as well as a vehicle for carrying life from planet to planet. The theory still faced criticism mostly due to doubts about how long spores would actually survive under the conditions of their transport from one planet, through space, to another. Despite all the emphasis placed on trying to establish the scientific legitimacy of this theory, it still lacked testability; that was and still is a serious problem the theory has yet to overcome.
Support for the theory persisted, however, with Fred Hoyle and Chandra Wickramasinghe using two reasons for why an extra-terrestrial origin of life might be preferred. First is that required conditions for the origin of life may have been more favorable somewhere other than Earth, and second that life on Earth exhibits properties that are not accounted for by assuming an endogenic origin. Hoyle studied spectra of interstellar dust, and came to the conclusion that space contained large amounts of organics, which he suggested were the building blocks of the more complex chemical structures. Critically, Hoyle argued that this chemical evolution was unlikely to have taken place on a prebiotic Earth, and instead the most likely candidate is a comet. Furthermore, Hoyle and Wickramasinghe concluded that the evolution of life requires a large increase in genetic information and diversity, which might have resulted from the influx of viral material from space via comets. Hoyle reported (in a lecture at Oxford on January 16, 1978) a pattern of coincidence between the arrival of major epidemics and the occasions of close encounters with comets, which lead Hoyle to suggest that the epidemics were a direct result of material raining down from these comets. This claim in particular garnered criticism from biologists.
Since the 1970s, a new era of planetary exploration meant that data could be used to test panspermia and potentially transform it from conjecture to a testable theory. Though it has yet to be tested, panspermia is still explored today in some mathematical treatments, and as its long history suggests, the appeal of the theory has stood the test of time.
The creation and distribution of organic molecules from space is now uncontroversial; it is known as pseudo-panspermia. The jump from organic materials to life originating from space, however, is hypothetical and currently untestable.
Plant seeds can be an alternative transport vessel. Some plants produce seeds that are resistant to the conditions of space, which have been shown to lie dormant in extreme cold, vacuum, and resist short wavelength UV radiation. They are not typically proposed to have originated in space, but on another planet. Theoretically, even if a plant is partially damaged during its travel in space, the pieces could still seed life in a sterile environment. Sterility of the environment is relevant because it is unclear if the novel plant could out-compete existing life forms. This idea is based on previous evidence showing that cellular reconstruction can occur from cytoplasms released from damaged algae. Furthermore, plant cells contain obligate , which could be released into a new environment.
Though both plant seeds and bacterial spores have been proposed as potentially viable vehicles, their ability to not only survive in space for the required time, but also survive atmospheric entry is debated.
may be a viable transport mechanism for interplanetary cross-pollination within the Solar System. Space agencies have implemented planetary protection procedures to reduce the risk of planetary contamination, but microorganisms such as Tersicoccus phoenicis may be resistant to Cleanroom.
Data gathered by the orbital experiments ERA, BIOPAN, EXOSTACK and EXPOSE showed that isolated spores, including those of B. subtilis, were rapidly killed if exposed to the full space environment for merely a few seconds, but if shielded against solar UV, the spores were capable of surviving in space for up to six years while embedded in clay or meteorite powder (artificial meteorites). Spores would therefore need to be heavily protected against UV radiation: exposure of unprotected DNA UV exposure and Cosmic ray ionizing radiation would break it up into its constituent bases. Rocks at least 1 meter in diameter are required to effectively shield resistant microorganisms, such as bacterial spores against galactic cosmic radiation. Additionally, exposing DNA to the ultrahigh vacuum of space alone is sufficient to cause DNA damage, so the transport of unprotected DNA or RNA during interplanetary flights powered solely by light pressure is extremely unlikely.
The feasibility of other means of transport for the more massive shielded spores into the outer Solar System—for example, through gravitational capture by comets—is unknown. There is little evidence in full support of the radiopanspermia hypothesis.
Although there is no concrete evidence that lithopanspermia has occurred in the Solar System, the various stages have become amenable to experimental testing.
Lithopanspermia, described by the mechanism above, can be either interplanetary or interstellar. It is possible to quantify panspermia models and treat them as viable mathematical theories. For example, a recent study of planets of the Trappist-1 planetary system presents a model for estimating the probability of interplanetary panspermia, similar to studies in the past done about Earth-Mars panspermia. This study found that lithopanspermia is 'orders of magnitude more likely to occur' in the Trappist-1 system as opposed to the Earth-to-Mars scenario. According to their analysis, the increase in probability of lithopanspermia is linked to an increased probability of abiogenesis amongst the Trappist-1 planets. In a way, these modern treatments attempt to keep panspermia as a contributing factor to abiogenesis, as opposed to a theory that directly opposes it. In line with this, it is suggested that if could be detected on two (or more) adjacent planets, that would provide evidence that panspermia is a potentially required mechanism for abiogenesis. As of yet, no such discovery has been made.
Lithopanspermia has also been hypothesized to operate between stellar systems. One mathematical analysis, estimating the total number of rocky or icy objects that could potentially be captured by planetary systems within the Milky Way, has concluded that lithopanspermia is not necessarily bound to a single stellar system. This not only requires these objects have life in the first place, but also that it survives the journey. Thus intragalactic lithopanspermia is heavily dependent on the survival lifetime of organisms, as well as the velocity of the transporter. Again, there is no evidence that such a process has, or can occur.
This principle is based on the fact that if our species is capable of infecting a sterile planet, then what is preventing another technological society from having done that to Earth in the past? They concluded that it would be possible to deliberately infect another planet in the foreseeable future. As far as evidence goes, Crick and Orgel argued that given the universality of the genetic code, it follows that an infective theory for life is viable.
Directed panspermia could, in theory, be demonstrated by finding a distinctive 'signature' message had been deliberately implanted into either the genome or the genetic code of the first microorganisms by our hypothetical progenitor, some 4 billion years ago. However, there is no known mechanism that could prevent mutation and natural selection from removing such a message over long periods of time.
|
|