Product Code Database
Example Keywords: take -mario $44
   » » Wiki: Neuston
Tag Wiki 'Neuston'.
Tag

Neuston, also called pleuston, are that live at the surface of a body of water, such as an , , , , or . Neuston can live on top of the water surface or submersed just below the water surface. In addition, microorganisms can exist in the surface microlayer that forms between the top- and the under-side of the water surface. Neuston has been defined as "organisms living at the air/water interface of freshwater, estuarine, and marine habitats or referring to the biota on or directly below the water's surface layer."

(2025). 9789401788007, Springer Netherlands.

Neustons can be informally separated into two groups: the phytoneuston, which are floating at the water surface including , filamentous and free-floating aquatic plant (e.g. , and ); and the zooneuston, which are floating such as (e.g. ) and (). The word "neuston" comes from neustos, meaning "swimming", and the -on (as in "").Merriam-Webster Dictionary: neuston. Accessed 18 December 2021. This term first appears in the biological literature in 1917. The alternative term pleuston comes from the Greek plein, meaning "to sail or float". The first known use of this word was in 1909, before the first known use of neuston.Merriam-Webster Dictionary: pleuston. Accessed 18 December 2021. In the past various authors have attempted distinctions between neuston and pleuston, but these distinctions have not been widely adopted. As of 2021, the two terms are usually used somewhat interchangeably, and neuston is used more often than pleuston.


Overview
The neuston of the surface layer is one of the lesser known aquatic ecological groups. The term was first used in 1917 by Naumann to describe species associated with the surface layer of freshwater habitats.Naumann, E. (1917) "Beiträge zur Kenntnis des Teichnannoplanktons. II. Über das Neuston des Süsswassers", Biologisches Zentralblatt, 37: 98–106. Later in 1971, Zaitsev identified neuston composition in marine waters.Zaitsev, Y. P. (1971) "Marine Neustonology". National Marine Fisheries Service, NOAA and NSF, Washington DC. These populations would include microscopic species, plus various plant and animal taxa, such as and , living in this region. In 2002, Gladyshev further characterised the major physical and chemical dynamics of the surface layer influencing the composition and relationships with various neustonic populations"
(2025). 9781900222174, IWA. .

The neustonic community structure is conditioned by sunlight and an array of (organic matter, respiratory, photosynthetic, decompositional processes) and (atmospheric deposition, inorganic matter, winds, wave action, precipitation, UV radiation, oceanic currents, surface temperature) variables and processes affecting nutrient inputs and recycling. Furthermore, the neuston provides a food source to the migrating from deeper layers to the surface,Hempel, G. and Weikert, H. (1972) "The neuston of the subtropical and boreal North-eastern Atlantic Ocean. A review". Marine Biology, 13(1): 70–88. as well as to roaming over the oceans.Cheng, L., Spear, L. and AINLEY, D.G. (2010) "Importance of marine insects (Heteroptera: Gerridae, Halobates spp.) as prey of eastern tropical Pacific seabirds". Marine Ornithology, 38": 91–95. For these reasons, the neustonic community is believed to play a critical role on the structure and function of marine food webs. Yet, research on neuston communities to date focused predominantly on geographically limited regions of the oceanZaitsev, Y. P. (1971). Marine Neustonology. ed. K. A. Vinogradov (Jerulasem: Israel program for scientific translations).Ebberts, B. D., and Wing, B. L. (1997). "Diversity and abundance of neustonic zooplankton in the North Pacific subarctic frontal zone". U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-70. or coastal areas.Padmavati, G. and Goswami, S.C. (1996). "Zooplankton distribution in neuston and water column along west coast of India from Goa to Gujarat". Indian J. Mar. Species, 25: 85–90. Consequently, neuston complexity is still poorly understood as studies on the community structure and the taxonomical composition of organisms inhabiting this ecological niche remain few, and global scale analyses are yet lacking.


Types
There are different ways neuston can be categorised. Kennish divides them by their physical position into two groups:
  • epineuston: organisms living on the water's surface
  • hyponeuston: organisms within a region of specified depth directly below the surface layer
To this can be added the organisms living in the microlayer at the interface between air and water:
  • microlayer neuston: organisms (microorganisms) living in the surface microlayer sandwiched between the upper and under surface.

Marshall and Burchardt divide neuston into three ecological categories:

  • euneuston: organisms with maximum abundance in the vicinity of the surface on which they reside day and night
  • facultative neuston: organisms concentrating at the surface only during certain hours of the day, usually during darkness
  • pseudoneuston: organisms with maximum concentrations at deeper layers but reaching the surface layer at least during certain hours.


Freshwater neuston
Freshwater neuston, organisms living at lake or pond surfaces or slow moving parts of rivers and streams, include (see ), , and (see and diving bell spider). in the genera and are almost exclusively neustonic, while species often aggregate on pond surfaces. such as are common examples of insects that support their weight on water's .

File:Gyrinus natator.JPG| ( ) File:Courtship ritual of Sminthurides aquaticus.webm|Water springtail ( ) File:Water spider 2.jpg|Diving bell spider ( Argyroneta aquatica) File:Gerris by webrunner.JPG| ( ) File:Wolffia-Spirodela.jpg| on a pond
By size: greater duckweed, and


Floods
There are different terrestrial environmental factors such as flood pulses and droughts, and these environmental factors affect species such as neuston, whether the effects lead to more or less variations in the species. When flood pulses (an abiotic factor) occur, connectivity between different aquatic environments occur. Species that live in environments with irregular flood patterns tend to have more variations, or even decrease species and variations; similar idea to what happens when droughts occur.Conceição, E. de O. da, Higuti, J., Campos, R. de, & Martens, K. (2018). Effects of flood pulses on persistence and variability of pleuston communities in a tropical floodplain lake. Hydrobiologia, 807(1), 175–188.

Red fire ants have adapted to contend with both flooding and drought conditions. If the ants sense increased water levels in their nests, they link together and form a ball or raft that floats, with the workers on the outside and the queen inside. The brood is transported to the highest surface. They are also used as the founding structure of the raft, except for the eggs and smaller larvae. Before submerging, the ants will tip themselves into the water and sever connections with the dry land. In some cases, workers may deliberately remove all males from the raft, resulting in the males drowning.

The longevity of a raft can be as long as 12 days. Ants that are trapped underwater escape by lifting themselves to the surface using bubbles which are collected from submerged substrate. Owing to their greater vulnerability to predators, red imported fire ants are significantly more aggressive when rafting. Workers tend to deliver higher doses of venom, which reduces the threat of other animals attacking. Due to this, and because a higher workforce of ants is available, rafts are potentially dangerous to those that encounter them.


Marine neuston
The marine neuston, organisms living at the ocean surface, are one of the least studied planktonic groups. Neuston occupies a restricted ecological niche and is affected by a wide range of endogenous and exogenous processes while also being a food source to zooplankton and fish migrating from the deep layers and seabirds. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.

Neustonic animals are primarily adapted to float upside-down on the ocean surface, similar to an inverted benthos, and form a unique subset of the zooplankton community, which plays a pivotal role in the functioning of marine ecosystems. Zooplankton are partially responsible for the active energy flux between superficial and deep layers of the ocean. Zooplankton species composition, biomass, and secondary production influence a wide range of trophic levels in marine communities, as they constitute a link between primary production and secondary consumers. constitute the most abundant zooplankton taxon in terms of biomass and worldwide. Consequently, changes in their community composition can impact the biogeochemical cycles and might be indicative of climate variability impacts on ecosystem functioning.

File:Portuguese man-o-war Physalia sp.png|Portuguese man-o-war Physalia sp. File:By-the-wind sailor Velella sp.png|By-the-wind sailor sp. File:Blue button Porpita sp.png|Blue button sp. File:Flying fish from the family Exocoetidae.png|Flying fish from the family File:Buoy barnacle Dosima fascicularis.png| Dosima fascicularis File:Blue sea dragons Glaucus sp.png|Blue sea dragons Glaucus sp.

Historically, zooplankton assemblages research has focused mainly on taxonomic studies and those related to community structure. However, recently, research has veered toward an alternative , providing a perspective more focused on groups of species with analogous . This allows individuals to be classified into types characterized by the presence/absence of certain of a , into size classes, , or functional groups (FGs). Functional traits are affecting organism fitness, growth, survival, and reproductive ability. These are regulated by the expression of genes within species, and the expression of traits regulate, in turn, the species fitness under contrasting and . Moreover, a specific functional trait can also develop from the interactions between other traits and environmental conditions, leading to a given trait grouping being favoured under certain conditions. Zooplankton traits can be classified in accordance to ecological functions – feeding, growth, reproduction, survival, and other characteristics such as morphology, , behaviour, or life history. Particularly, feeding strategies and are relevant to establish feeding efficiency and associated predation risk. Additionally, they facilitate the understanding of ecosystem services associated with zooplankton, such as the distribution of fisheries or biogeochemical cycling while also allowing the positioning of zooplankton taxa in the food web.

File:Paper nautilus Argonauta sp.png| Argonauta sp. File:Sargassum sp. seaweed.png| sp. seaweed File:Hippolytidae shrimp.png| shrimp File:Marine snail Recluzia sp.png|Marine snail sp. File:Violet snail Janthina sp.png|Violet snail sp. File:Floating anemone Actinecta sp.png|Floating Actinecta sp.

are a genus of quite rare wingless marine bugs known only from coral reefs in the Indo-Pacific region. During low tide they move over water surfaces around coral atolls and reefs similar to the more familiar water-striders, staying submerged in reef crevices during high tide.


See also


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time