Methanotrophs (sometimes called methanophiles) are that Metabolism methane as their source of carbon and chemical energy. They are bacteria or archaea, can grow aerobically or anaerobically, and require single-carbon compounds to survive.
Methanotrophs are especially common in or near environments where methane is produced, although some methanotrophs can oxidize atmospheric methane. Their habitats include wetlands, soils, marshes, rice paddies, landfills, aquatic systems (lakes, oceans, streams) and more. They are of special interest to researchers studying global warming, as they play a significant role in the global methane budget, by reducing the amount of methane emitted to the atmosphere.
Methanotrophy is a special case of methylotrophy, using single-carbon compounds that are more reduced than carbon dioxide. Some methylotrophs, however, can also make use of multi-carbon compounds; this differentiates them from methanotrophs, which are usually fastidious methane and methanol oxidizers. The only facultative methanotrophs isolated to date are members of the genus Methylocella silvestris, Methylocapsa aurea and several Methylocystis strains.
In functional terms, methanotrophs are referred to as methane-oxidizing bacteria. However, methane-oxidizing bacteria encompass other organisms that are not regarded as sole methanotrophs. For this reason, methane-oxidizing bacteria have been separated into subgroups: methane-assimilating bacteria (MAB) groups, the methanotrophs, and autotrophic ammonia-oxidizing bacteria (AAOB), which cooxidize methane.
Methanotrophs have been historically classified broadly into three types which are defined by physiology, mechanism of methane metabolism, and morphology: Type I, II and X. More recent literature has complicated these types by identifying overlapping characteristics in genetic makeup and the environmental conditions in which they are most likely to occur. Generally, Type I methanotrophs tend to dominate in cold, anaerobic environments, meaning there is limited oxygen availability, which often have high methane concentrations. However, at a high enough salinity, Type II will dominate even in cold temperatures. Type II methanotrophs tend to be more tolerant of stress and dominate in methane limited environments and acidic pHs. As methanotroph research expands, there is less of a clear line between Type I and II methanotrophs, so familial or species classifications are more useful for grouping these organisms as seen in Table 1. This table helps illuminate that methanotrophs that favor extreme environments, like hydrothermal vents, tend to uptake methane via the Calvin-Benson-Bassham Cycle (CBB). Research to understand why certain methanotrophs favor certain conditions and assimilation pathways is ongoing and relevant to predicting methanotroph responses to climate change.
Aerobic methanotrophs are also known from the Methylacidiphilaceae (phylum Verrucomicrobiota). In contrast to Gammaproteobacteria and Alphaproteobacteria, methanotrophs in the phylum Verrucomicrobiota are . In 2021 a bacterial bin from the phylum Gemmatimonadota called " Candidatus Methylotropicum kingii" showing aerobic methanotrophy was discovered thus suggesting methanotrophy to be present in the four bacterial phyla.
In some cases, aerobic methane oxidation can take place in anoxic environments. " Candidatus Methylomirabilis oxyfera" belongs to the phylum NC10 bacteria, and can catalyze nitrite reduction through an "intra-aerobic" pathway, in which internally produced oxygen is used to oxidise methane. In clear water lakes, methanotrophs can live in the anoxic water column, but receive oxygen from Photosynthesis organisms, which they then directly consume to oxidize methane.
No aerobic methanotrophic archaea are known.
The anaerobic methanotrophs are not related to the known aerobic methanotrophs; the closest cultured relatives to the anaerobic methanotrophs are the in the order Methanosarcinales.
In 2010 a new bacterium Candidatus Methylomirabilis oxyfera from the phylum NC10 was identified that can couple the anaerobic oxidation of methane to nitrite reduction without the need for a syntrophy partner. Based on studies of Ettwig et al., it is believed that M. oxyfera oxidizes methane anaerobically by utilizing oxygen produced internally from the dismutation of nitric oxide into nitrogen and oxygen gas.
In addition to providing a natural methane sink, methanotrophs provide other services for humans. In wastewater treatment plants, the application of a mix of methanotrophic bacteria has the potential to reduce costs and increase overall efficiency at removing nitrogen and byproducts. Depending upon environmental conditions, these methanotrophs can also produce biomolecules during the wastewater treatment process that are useful for a wide range of applications. For example, methanotrophs undergoing glycolysis produce exopolysaccharides (EPS) which can be extracted and used in medicine. A well-known EPS is hyaluronic acid which is used widely in cosmetics and wound care.
Cells containing pMMO have demonstrated higher growth capabilities and higher affinity for methane than sMMO containing cells. It is suspected that copper ions may play a key role in both pMMO regulation and the enzyme catalysis, thus limiting pMMO cells to more copper-rich environments than sMMO producing cells.
Classification
Aerobic
Anaerobic
Special species
Taxonomy
Methane oxidation
See also
External links
|
|