Product Code Database
Example Keywords: leather -nintendo $84
barcode-scavenger
   » » Wiki: Mescaline
Tag Wiki 'Mescaline'.
Tag

Mescaline, also known as mescalin or mezcalin, and in chemical terms 3,4,5-trimethoxyphenethylamine, is a of the substituted phenethylamine class, found in like ( Lophophora williamsii) and San Pedro (certain species of the genus ) and known for its effects.

Mescaline is typically taken orally and used recreationally, spiritually, and medically, with psychedelic effects occurring at doses from 100 to 1,000mg, including below 75mg, and it can be consumed in pure form or via mescaline-containing cacti. Mescaline induces a psychedelic experience characterized by vivid visual patterns, altered perception of time and self, , and spiritual effects, with an onset of 0.5 to 0.9hours and a duration that increases with dose, ranging from about 6 to 14hours. Mescaline has a high median lethal dose across species, with the human LD50 estimated at approximately 880mg/kg, making it very difficult to consume a fatal amount. blocks mescaline’s psychoactive effects, and while it's unclear if mescaline is metabolized by monoamine oxidase enzymes, but preliminary evidence suggests may potentiate its effects.

Mescaline primarily acts as a at serotonin 5-HT2A receptors, with varying affinity and efficacy across multiple , adrenergic, dopamine, histamine, muscarinic, and trace amine receptors, but shows low affinity for most non-serotonergic targets. It is a relatively psychedelic compound structurally related to but acting on the serotonergic system, first synthesized in 1919, with numerous synthetic methods and potent analogues developed since. Mescaline occurs naturally in various cacti species, with concentrations varying widely, and is in plants from via catecholamine pathways likely linked to stress responses.

Mescaline-containing cacti use dates back over 6,000 years. Peyote was studied scientifically in the 19th and 20th centuries, culminating in the isolation of mescaline as its primary psychoactive compound, legal recognition of its religious use, and ongoing exploration of its therapeutic potential. Mescaline is largely illegal worldwide, though exceptions exist for religious, scientific, or ornamental use, and it has influenced many notable cultural figures through its psychoactive effects. Very few studies concerning mescaline's activity and potential therapeutic effects in people have been conducted since the early 1970s.


Uses
Mescaline is used recreationally, (as an ), and . It is typically taken orally.


Dosage
Mescaline is used as a psychedelic at doses of 100 to 1,000mg orally.
(2025). 9783031121838
Low doses are 100 to 200mg, an intermediate or "good effect" dose is 500mg, and a high or dose is 1,000mg. Microdosing involves the use of subthreshold mescaline doses of less than 75mg.

In addition to pure form, mescaline is used in the form of mescaline-containing such as and San Pedro.


Effects
Mescaline induces a psychedelic state comparable to those produced by and , but with unique characteristics. Subjective effects may include altered thinking processes, an altered sense of time and self-awareness, and closed- and open-eye visual phenomena.

Prominence of color is distinctive, appearing brilliant and intense. Recurring visual patterns observed during the mescaline experience include stripes, checkerboards, angular spikes, multicolor dots, and very simple that turn very complex. The English writer described these self-transforming amorphous shapes as like animated stained glass illuminated from light coming through the eyelids in his autobiographical book The Doors of Perception (1954). Like LSD, mescaline induces distortions of form and experiences but they manifest more clearly with eyes closed and under low lighting conditions.

(2025). 9789048124473, Springer Science & Business Media.

Heinrich Klüver coined the term "cobweb figure" in the 1920s to describe one of the four geometric visual hallucinations experienced in the early stage of a mescaline trip: "Colored threads running together in a revolving center, the whole similar to a cobweb". The other three are the chessboard design, tunnel, and spiral. Klüver wrote that "many 'atypical' visions are upon close inspection nothing but variations of these form-constants."

An unusual but unique characteristic of mescaline use is the "geometrization" of three-dimensional objects. The object can appear flattened and distorted, similar to the presentation of a painting.

(1989). 9780874894998, Medical Economics Books.

Mescaline elicits a pattern of sympathetic arousal, with the peripheral nervous system being a major target for this substance.

(1996). 9780023287640, Prentice Hall.

According to a research project in the Netherlands, ceremonial San Pedro use seems to be characterized by relatively strong spiritual experiences, and low incidence of challenging experiences.


Onset and duration
The onset of the effects of mescaline given orally is 0.5 to 0.9hours on average with a range of 0.1 to 2.7hours. Its effects peak after 1.9 to 4.0hours with a range of 0.5 to 8.0hours.

The duration of mescaline appears to be , varying from 6.4hours on average (range 3.0–10hours) at a dose of 100mg, 9.7 to 11hours on average (range 5.6–22hours) at moderate doses of 300 to 500mg, and 14hours on average (range 7.2–22hours) at a dose of 800mg.


Overdose
The LD50 of mescaline has been measured in various animals: 212–315mg/kg i.p. (mice), 132–410mg/kg i.p. (rats), 328mg/kg i.p. (guinea pigs), 54mg/kg in dogs, and 130mg/kg i.v. in . For humans, the LD50 of mescaline has been reported to be approximately 880mg/kg. It has been said that it would be very difficult to consume enough mescaline to cause death in humans.


Interactions
The 5-HT2A receptor antagonist has been found to block the psychoactive effects of mescaline.

It is unclear whether mescaline is by monoamine oxidase (MAO) or whether monoamine oxidase inhibitors (MAOIs) might increase the effects of mescaline. However, there are preliminary reports that , which are reversible inhibitors of monoamine oxidase A (RIMAs), may potentiate the effects of mescaline in humans, and the combination of mescaline or mescaline-containing cacti with harmala alkaloids has been referred to as "peyohuasca". In accordance with these findings, the harmala alkaloid and RIMA has been reported to augment the effects of mescaline in animals.


Pharmacology

Pharmacodynamics
+
1,841–4,600
>10,000
>10,000
5,205
550–17,400 (Ki)
88–30,200 ()
33–107% ()
793–800 (Ki)
1,100–>20,000 ()
91% ()
300–17,000
20–19,500 ()
22–109% ()
>10,000
>10,000
>10,000
>10,000
>15,000
>10,000
1,400–8,930
>10,000
745
>10,000
>10,000
>10,000
>17,000
>10,000
>10,000
>10,000
>10,000
3,300 (Ki) (rat)
11,000 (Ki) (mouse)
3,700–4,800 () (rodent)
>10,000 () (human)
2,678
>10,000
>30,000 (Ki)
367,000 ()
>30,000 (Ki)
>900,000 ()
>30,000 (Ki)
841,000 ()
Notes: The smaller the value, the more avidly the drug binds to the site. All proteins are human unless otherwise specified. Refs:

In humans, mescaline acts similarly to other psychedelic agents. It acts as an agonist, binding to and activating the 5-HT2A receptor. Its at the serotonin 5-HT2A receptor is approximately 10,000nM and at the serotonin 5-HT2B receptor is greater than 20,000nM. How activating the 5-HT2A receptor leads to psychedelic effects is still unknown, but it is likely that somehow it involves excitation of neurons in the prefrontal cortex. In addition to the serotonin 5-HT2A and 5-HT2B receptors, mescaline is also known to bind to the serotonin 5-HT2C receptor and a number of other targets.

Mescaline lacks affinity for the monoamine transporters, including the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) (Ki > 30,000nM). However, it has been found to increase levels of the major serotonin 5-hydroxyindoleacetic acid (5-HIAA) at high doses in rodents. This finding suggests that mescaline might inhibit the reuptake and/or induce the release of serotonin at such doses. In any case, this possibility has not yet been further assessed or demonstrated. Besides serotonin, mescaline might also weakly induce the release of dopamine, but this is probably of modest significance, if it occurs. In accordance, there is no evidence of the drug showing or . Mescaline appears to be inactive in terms of norepinephrine release induction and indirect activity. Other psychedelic phenethylamines, including the closely related 2C, , and TMA drugs, are inactive as monoamine releasing agents and reuptake inhibitors. However, an exception is trimethoxyamphetamine (TMA), the amphetamine analogue of mescaline, which is a very low-potency serotonin releasing agent ( = 16,000nM). The possible monoamine-releasing effects of mescaline would likely be related to its structural similarity to substituted amphetamines and related compounds.

Mescaline is a relatively low-potency psychedelic, with active doses in the hundreds of milligrams and micromolar affinities for the serotonin 5-HT2A receptor. For comparison, is approximately 20-fold more potent (doses in the tens of milligrams) and lysergic acid diethylamide (LSD) is approximately 2,000-fold more potent (doses in the tens to hundreds of micrograms). There have been efforts to develop more potent analogues of mescaline. Difluoromescaline and trifluoromescaline are more potent than mescaline, as is its amphetamine homologue TMA. and are also both more potent than mescaline, showing the importance of the 4-position substituent with regard to receptor binding.

There is no evidence of acute with mescaline. However, tolerance to mescaline builds with repeated use, lasting for a few days. The drug causes with other serotonergic psychedelics such as LSD and .

The structures of the serotonin 5-HT2A receptor with mescaline, as well as with various other psychedelics and serotonin 5-HT2A receptor agonists, have been solved and published by Bryan L. Roth and colleagues.


Pharmacokinetics

Absorption
Mescaline is usually taken orally, although it may also be , smoked, or given intravenously. Taken orally, it is rapidly absorbed from the gastrointestinal tract. The oral of mescaline is unknown. However, since at least 53% of orally administered mescaline is excreted in unchanged, the bioavailability appears to be at least 53%. Peak concentrations of mescaline occur after approximately 1.6 to 2.3hours on average (range 1.0–6.0hours). The of mescaline are dose-proportional over an oral dose range of 100 to 800mg.


Distribution
Mescaline is distributed to the , , and at many times higher levels than blood or brain based on animal studies. It is said that a great proportion of mescaline is combined with hepatic proteins, which is said to delay its onset and elimination half-life. The exact portion bound to plasma proteins appears to be unknown.

Mescaline appears to have relatively poor blood–brain barrier permeability due to its low . However, it is still able to cross into the central nervous system and produce effects at sufficiently high doses. The poor central permeability of mescaline appears to be responsible for its delayed onset of effects and is also thought to contribute to its low potency.


Metabolism
Mescaline given orally appears to be subject to first-pass metabolism of about 50%. Following the first pass, mescaline appears to be subject to relatively limited .

The primary metabolic pathway of mescaline is oxidative deamination. The specific mediating the deamination of mescaline are controversial however. Monoamine oxidase (MAO), (DAO; histamine oxidase), and/or other enzymes may be responsible. Preclinical studies of mescaline given in combination with inhibitors of MAO and/or DAO, such as , , and , have been conducted, but findings have been conflicting. Mescaline has been reported to be a poor or negligible substrate of highly purified human MAO .

Mescaline appears not to be subject to metabolism by CYP2D6 based on in-vitro studies with human liver microsomes. Similarly, the in-vitro of mescaline does not appear to be affected by cytochrome P450 (CYP450) . Conversely, it was potentiated by the inhibitor but not by the inhibitor . These findings were in contrast to those with the related compound 2C-B, which was potentiated by rasagiline but not by clorgiline.

Circulating peak and area-under-the-curve concentrations of mescaline and 3,4,5-trimethoxyphenylacetic acid (TMPAA) are similar with oral administration of mescaline. Conversely, levels of N-acetylmescaline (NAM) are far lower than those of mescaline or TMPAA and are thought not to be of clinical relevance. Intravenous injection of mescaline may result in less hepatic deamination than with oral administration.

Active metabolites of mescaline might contribute to its psychoactive effects. However, both TMPAA and NAM have been said to be inactive based on human tests. Similarly, 3,4,5-trimethoxyphenylethanol (TMPE), 3,4,5-trimethoxyphenylacetaldehyde (TMPA), and NAM all failed to produce mescaline-like effects in rodent drug discrimination tests.

3,4,5-Trimethoxyamphetamine (TMA), the α- analogue of mescaline and an MAO-resistant psychedelic, is only about twice as potent as mescaline as a psychedelic in humans despite having similar serotonin receptor affinity. This suggests that the deamination of mescaline has a relatively limited impact on its potency, compared to for example the 2C series of psychedelics.


Elimination
Mescaline given orally is 87% in within 24hours and 92% in urine within 48hours. During the first hour after administration, 81.4% of mescaline is excreted unchanged while 13.2% is excreted as its deaminated metabolite 3,4,5-trimethoxyphenylacetic acid (TMPAA). However, after the first hour, the percentage excreted as unchanged mescaline declines and the percentage excreted as TMPAA rises. Ultimately, mescaline is excreted in urine 28 to 60% unchanged, 27 to 30% or more as TMPAA, 5% as N-acetyl-3,4-dimethoxy-5-hydroxyphenylethylamine, and less than 0.1% as N-acetylmescaline. Other minor or trace excreted metabolites have also been observed. In a more modern study published in 2025, mescaline was eliminated in urine 53% as unchanged mescaline and 31% as TMPAA.

Mescaline was originally reported to have an elimination half-life of 6hours based on a study conducted in the 1960s. However, subsequent research published in the 2020s found that its half-life is actually about 3.6hours (range 2.6–5.3hours). The previous higher estimate is believed to have been due to small and collective measurement of mescaline metabolites. The elimination half-life of mescaline does not appear to be . TMPAA has a half-life of about 3.7 to 4.1hours, similar to that of mescaline.

Mescaline has a similar half-life as LSD yet has a longer duration. This is due to mescaline having slower absorption and onset rather than a longer half-life.


Chemistry
Mescaline, also known as 3,4,5-trimethoxyphenethylamine (3,4,5-TMPEA), is a substituted phenethylamine derivative. It is closely structurally related to the (3,4-dihydroxyphenethylamine), (3,4,β-trihydroxyphenethylamine), and (3,4,β-trihydroxy- N-methylphenethylamine). In contrast to the catecholamine neurotransmitters however, mescaline acts on the system rather than on the or systems.

The drug is relatively with low . Its predicted log P (XLogP3) is 0.7.

The physical properties and general chemistry of mescaline have been reviewed.

(1968). 9783034870641


Synthesis
Mescaline was first synthesized in 1919 by Ernst Späth from 3,4,5-trimethoxybenzoyl chloride. Several approaches using different starting materials have been developed since, including the following:

  • Hofmann rearrangement of 3,4,5-trimethoxyphenylpropionamide.
  • Cyanohydrin reaction between potassium cyanide and 3,4,5-trimethoxybenzaldehyde followed by and reduction.
  • of 3,4,5-trimethoxybenzaldehyde with followed by nitro compound reduction of ω-nitrotrimethoxystyrene.
    (1991). 9780963009609, Transform Press. .
  • of followed by reductive amination.
  • Ester reduction of 's followed by , Kolbe nitrile synthesis, and nitrile reduction.
    (1991). 9780123705518, Academic Press, Inc.. .
  • of 3,4,5-trimethoxyphenylacetamide.
  • Reduction of 3,4,5-trimethoxy(2-nitrovinyl)benzene with lithium aluminum hydride.
  • Treatment of tricarbonyl-(η6-1,2,3-trimethoxybenzene) chromium complex with acetonitrile carbanion in and iodine, followed by reduction of the nitrile with lithium aluminum hydride.


Analogues
A large number of structural analogues of mescaline that act as psychedelics have been developed. These drugs often have far greater potency than mescaline itself. Examples include scalines like , 3Cs like 3,4,5-trimethoxyamphetamine (TMA or TMA-1; α-methylmescaline), 2Cs like 2C-B, and drugs like DOM, among others. Other notable analogues of mescaline include N-methylmescaline (found in Pachycereus pringlei), ( N, N-dimethylmescaline), , and , among others.


Natural occurrence
It occurs naturally in several species of cacti. It is also reported to be found in small amounts in certain members of the bean family, , including Senegalia berlandieri (syn. Acacia berlandieri), although these reports have been challenged and have been unsupported in any additional analyses.

Average 0.56; 0.85 in one cultivar of Echinopsis scopulicola
0.005 - 2.375
0.01-5.5
0.01-0.05; 0.24-0.81
0.23-4.7; 0.32 under its synonym Echinopsis santaensis
0.05
Trichocereus tacaquirensis (subsp. taquimbalensis syn. Trichocereus taquimbalensis)0.005-2.7

As shown in the accompanying table, the concentration of mescaline in different specimens can vary largely within a single species. Moreover, the concentration of mescaline within a single specimen varies as well.

In plants, mescaline may be the end-product of a pathway utilizing catecholamines as a method of stress response, similar to how animals may release such compounds and others such as when stressed. The in vivo function of catecholamines in plants has not been investigated, but they may function as , as developmental signals, and as integral cell wall components that resist degradation from pathogens. The deactivation of catecholamines via methylation produces alkaloids such as mescaline.


Biosynthesis
Mescaline is from , which, in turn, is derived from by the enzyme phenylalanine hydroxylase. In Lophophora williamsii (), converts into mescaline in a biosynthetic pathway involving m- O-methylation and aromatic hydroxylation.
(2025). 9780471496410, John Wiley & Sons.

Tyrosine and phenylalanine serve as metabolic precursors towards the synthesis of mescaline. Tyrosine can either undergo a decarboxylation via tyrosine decarboxylase to generate and subsequently undergo an oxidation at carbon 3 by a monophenol hydroxylase or first be hydroxylated by tyrosine hydroxylase to form and decarboxylated by DOPA decarboxylase. These create dopamine, which then experiences methylation by a catechol-O-methyltransferase (COMT) by an S-adenosyl methionine (SAM)-dependent mechanism. The resulting intermediate is then oxidized again by a hydroxylase enzyme, likely monophenol hydroxylase again, at carbon 5, and methylated by COMT. The product, methylated at the two meta positions with respect to the alkyl substituent, experiences a final methylation at the 4 carbon by a guaiacol-O-methyltransferase, which also operates by a SAM-dependent mechanism. This final methylation step results in the production of mescaline.

Phenylalanine serves as a precursor by first being converted to L-tyrosine by L-amino acid hydroxylase. Once converted, it follows the same pathway as described above.


History
Archaeological evidence from sites in the United States, Mexico, and Peru indicates that mescaline-containing cacti have been used for over 6,000 years. Europeans recorded use of peyote in Native American religious ceremonies upon early contact with the in Mexico.
(1984). 9780806120317, University of Oklahoma Press.
Other mescaline-containing cacti such as the San Pedro have a long history of use in South America, from Peru to Ecuador. While religious and ceremonial peyote use was widespread in the and northern Mexico at the time of the Spanish conquest, religious persecution confined it to areas near the Pacific coast and up to southwest Texas. However, by 1880, peyote use began to spread north of South-Central America with "a new kind of peyote ceremony" inaugurated by the Kiowa and Comanche people. These religious practices, incorporated legally in the United States in 1920 as the Native American Church, have since spread as far as Saskatchewan, Canada.

In traditional peyote preparations, the top of the cactus is cut off, leaving the large tap root along with a ring of green photosynthesizing area to grow new heads. These heads are then dried to make disc-shaped buttons. Buttons are chewed to produce the effects or soaked in water to drink. However, the taste of the cactus is bitter, so modern users will often grind it into a powder and pour it into capsules to avoid having to taste it. The typical dosage is 200–400 milligrams of mescaline sulfate or 178–356 milligrams of mescaline hydrochloride. The average peyote button contains about 25mg mescaline.

(1982). 9780874881820, Medical Examination Publishing Company.
Some analyses of traditional preparations of San Pedro cactus have found doses ranging from 34mg to 159mg of total alkaloids, a relatively low and barely psychoactive amount. It appears that patients who receive traditional treatments with San Pedro ingest sub-psychoactive doses and do not experience psychedelic effects.

Botanical studies of peyote began in the 1840s and the drug was listed in the Mexican . The first use of mescal buttons was published by John Raleigh Briggs in 1887. In 1887, the German pharmacologist received his first sample of the peyote cactus, found numerous new alkaloids and later published the first methodical analysis of it. Mescaline was first isolated and identified in 1897 by the German chemist . He showed that mescaline was exclusively responsible for the psychoactive or hallucinogenic effects of peyote. However, other components of peyote, such as , , and , are also active. Mescaline was first synthesized in 1919 by Ernst Späth.

In 1955, English politician Christopher Mayhew took part in an experiment for 's Panorama, in which he ingested 400mg of mescaline under the supervision of psychiatrist . Though the recording was deemed too controversial and ultimately omitted from the show, Mayhew praised the experience, calling it "the most interesting thing I ever did".

Studies of the potential therapeutic effects of mescaline started in the 1950s.

The mechanism of action of mescaline, activation of the 5-HT2A receptors, became known in the 1990s.


Society and culture

Legal status

United States
In the United States, mescaline was made illegal in 1970 by the Comprehensive Drug Abuse Prevention and Control Act, categorized as a Schedule I hallucinogen. The drug is prohibited internationally by the 1971 Convention on Psychotropic Substances. Mescaline is legal only for certain religious groups (such as the Native American Church by the American Indian Religious Freedom Act of 1978) and in scientific and medical research. In 1990, the Supreme Court ruled that the state of Oregon could ban the use of mescaline in Native American religious ceremonies. The Religious Freedom Restoration Act (RFRA) in 1993 allowed the use of peyote in religious ceremony, but in 1997, the Supreme Court ruled that the RFRA is unconstitutional when applied against states. Many states, including the state of , have legalized peyote usage with "sincere religious intent", or within a religious organization, regardless of race. Synthetic mescaline, but not mescaline derived from cacti, was officially decriminalized in the state of Colorado by ballot measure Proposition 122 in November 2022.

While mescaline-containing cacti of the genus are technically controlled substances under the Controlled Substances Act, they are commonly sold publicly as .

(2025). 9780123704672, Academic Press.


United Kingdom
In the United Kingdom, mescaline in purified powder form is a Class A drug. However, dried cactus can be bought and sold legally.


Australia
Mescaline is considered a schedule 9 substance in Australia under the Poisons Standard (February 2020). Poisons Standard February 2020. comlaw.gov.au A schedule 9 substance is classified as "Substances with a high potential for causing harm at low exposure and which require special precautions during manufacture, handling or use. These poisons should be available only to specialised or authorised users who have the skills necessary to handle them safely. Special regulations restricting their availability, possession, storage or use may apply."


Other countries
In Canada, France, The Netherlands and Germany, mescaline in raw form and dried mescaline-containing cacti are considered illegal drugs. However, anyone may grow and use peyote, or Lophophora williamsii, as well as Echinopsis pachanoi and Echinopsis peruviana without restriction, as it is specifically exempt from legislation. In Canada, mescaline is classified as a schedule III drug under the Controlled Drugs and Substances Act, whereas peyote is exempt.

In Russia mescaline, its derivatives and mescaline-containing plants are banned as narcotic drugs (Schedule I).


Notable individuals
  • Salvador Dalí experimented with mescaline believing it would enable him to use his subconscious to further his art potential.
  • wrote 1947's The Peyote Dance, where he describes his peyote experiences in Mexico a decade earlier.
  • took peyote prior to forming The Grateful Dead but later switched to and DMT since they were easier on the stomach.
  • took peyote. Part II of his poem "Howl" was inspired by a peyote vision that he had in San Francisco.
  • took peyote prior to writing One Flew Over the Cuckoo's Nest.
  • took mescaline shortly before the publication of his first book, L'Imaginaire; he had a bad trip during which he imagined that he was menaced by sea creatures. For many years following this, he persistently thought that he was being followed by lobsters, and became a patient of in hopes of being rid of them. Lobsters and crabs figure in his novel Nausea.
  • was the author of one of the first written reports to the public about an experience with mescaline (1898).
    (1993). 9780714117362, British Museum Press.
    (1997). 9781570660535, Practice Management Information Corp.
  • Stanisław Ignacy Witkiewicz, Polish writer, artist and philosopher, experimented with mescaline and described his experience in a 1932 book Nikotyna Alkohol Kokaina Peyotl Morfina Eter.
  • described his experience with mescaline in the essay "The Doors of Perception" (1954).
  • in The Basketball Diaries described using peyote that a friend smuggled from Mexico.
  • , appointed by the federal government as principal chief of the entire Nation, advocated the syncretic Native American Church alternative, and fought for the legal use of peyote in the movement's religious practices.
  • Hunter S. Thompson wrote an extremely detailed account of his first use of mescaline in "First Visit with Mescalito", and it appeared in his book Songs of the Doomed, as well as featuring heavily in his novel Fear and Loathing in Las Vegas.
  • Psychedelic research pioneer Alexander Shulgin said he was first inspired to explore psychedelic compounds by a mescaline experience. In 1974, Shulgin synthesized 2C-B, a psychedelic phenylethylamine derivative, structurally similar to mescaline, and one of Shulgin's self-rated most important phenethylamine compounds together with Mescaline, 2C-E, 2C-T-7, and 2C-T-2.
  • produced Mars Ascends after trying the substance for the first time.
  • mentioned mescaline use during his youth while being interviewed in 2008.
  • told about his mescaline use in a 1989 interview.
  • Disney animator described participating in a study of mescaline and peyote conducted by UCLA in the 1960s.
  • used real mescaline for the movie Crystal Fairy & the Magical Cactus, as expressed in an interview.
  • Philip K. Dick was inspired to write Flow My Tears, the Policeman Said after taking mescaline.
  • , a psychologist turned drug legalization advocate and writer whose Neo-American Church defended use of marijuana and hallucinogens such as LSD and peyote for spiritual enlightenment and exploration, bought, in 1960, by mail from Delta Chemical Company in New York 1 g of mescaline sulfate and took 500mg. He experienced a psychedelic trip that caused profound changes in his life and outlook.


Research
Mescaline has a wide array of suggested medical usage, including treatment of depression, anxiety, PTSD, and . However, its status as a Schedule I controlled substance in the Convention on Psychotropic Substances limits availability of the drug to researchers. Because of this, very few studies concerning mescaline's activity and potential therapeutic effects in people have been conducted since the early 1970s.


See also
  • List of psychedelic plants
    • Mind at Large (concept in The Doors of Perception)
  • (1964)
  • Der Meskalinrausch, seine Geschichte und Erscheinungsweise (1927)


Further reading


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
2s Time