Furfural is an organic compound with the formula C4H3OCHO. It is a colorless liquid, although commercial samples are often brown. It has an aldehyde group attached to the 2-position of furan. It is a product of the dehydration of sugars, as occurs in a variety of agriculture byproducts, including maize, oat, wheat bran, and sawdust. The name furfural comes from the Latin word furfur, meaning bran, referring to its usual source. Furfural is derived only from dried biomass. In addition to ethanol, acetic acid, and sugar, furfural is one of the oldest known organic chemicals available readily purified from natural precursors.
Furfural remained relatively obscure until 1922, when the Quaker Oats Company began mass-producing it from oat hulls. Today, furfural is still produced from agricultural byproducts like bagasse and corn cobs. The main countries producing furfural today are the Dominican Republic, South Africa and China.
Furfural participates in the same kinds of reactions as other aldehydes and other aromatic compounds. It exhibits less aromatic character than benzene, as can be seen from the fact that furfural is readily hydrogenation to tetrahydrofurfuryl alcohol. When heated in the presence of acids, furfural irreversibly polymerizes, acting as a thermosetting polymer.
These sugars may be obtained from obtained from hemicellulose present in lignocellulosic biomass.
Between 3% and 10% of the mass of crop residue feedstocks can be recovered as furfural, depending on the type of feedstock. Furfural and water evaporate together from the reaction mixture, and separate upon condensation. The global production capacity is about 800,000 tons as of 2012. China is the biggest supplier of furfural, and accounts for the greater part of global capacity. The other two major commercial producers are Illovo Sugar in South Africa and Central Romana in the Dominican Republic.
In the laboratory, furfural can be synthesized from plant material by heating with sulfuric acid or other acids. With the purpose to avoid toxic effluents, an effort to substitute sulfuric acid with easily separable and reusable solid acid catalysts has been studied around the world. The formation and extraction of xylose and subsequently furfural can be favored over the extraction of other sugars with varied conditions, such as acid concentration, temperature, and time.
In industrial production, some lignocellulosic residue remains after the removal of the furfural. This residue is dried and burned to provide steam for the operation of the furfural plant. Newer and more energy efficient plants have excess residue, which is or can be used for co-generation of electricity,
In petrochemical industry, furfural is utilized as a specialized chemical solvent for diene extraction.
Furfural is an important renewable, non-petroleum based, chemical feedstock which can be converted into solvents, polymers, fuels and other useful chemicals by a range of catalytic Redox.
Hydrogenation of furfural provides furfuryl alcohol (FA), which is used to produce , which are exploited in thermoset polymer matrix composites, cements, adhesives, casting resins and coatings. Further hydrogenation of furfuryl alcohol leads to tetrahydrofurfuryl alcohol (THFA), which is used as a solvent in agricultural formulations and as an adjuvant to help herbicides penetrate the leaf structure.
Palladium-catalyzed decarbonylation on furfural manufactures industrially furan.
Another important solvent made from furfural is methyltetrahydrofuran. Furfural is used to make other furan derivatives, such as furoic acid, via oxidation, and furan itself via palladium catalyzed vapor phase decarbonylation.
There is a good market for value added chemicals that can be obtained from furfural.
The median lethal dose is high, 650–900 mg/kg (oral, dogs), consistent with its pervasiveness in foods.
The Occupational Safety and Health Administration has set a permissible exposure limit for furfural at 5ppm over an eight-hour time-weighted average (TWA), and also designates furfural as a risk for skin absorption.
Safety
See also
External links
|
|