Euchambersia is an extinction genus of therocephalian that lived during the Late Permian in what is now South Africa and China. The genus contains two species. The type species E. mirabilis was named by paleontologist Robert Broom in 1931 from a skull missing the lower jaw. A second skull, belonging to a probably immature individual, was later described. In 2022, a second species, E. liuyudongi, was named by Jun Liu and Fernando Abdala from a well-preserved skull. It is a member of the family Akidnognathidae, which historically has also been referred by as the synonymous Euchambersiidae (named after Euchambersia).
Euchambersia was a small and short-snouted therocephalian, possessing large canine tooth as is typical of the group. However, it is notable among therocephalians for possessing ridges on its canines and a large indentation in the side of the skull. It has been proposed that these structures supported a venom delivery mechanism. If this statement turns out to be true, then it would be one of the oldest known to have this characteristic. In 2017, the internal structure of the skull of E. mirabilis has been used as stronger evidence in favour of the hypothesis that it was venomous; other possibilities, such as the indentation supporting some sort of sensory organ, still remain plausible.
Broom named the genus Euchambersia, which he considered "the most remarkable therocephalian ever discovered", after the eminent Scotland publisher and evolutionary thinker Robert Chambers, whose Vestiges of the Natural History of Creation was considered by Broom to be "a very remarkable work" though "sneered at by many".
The second species, E. liuyudongi, was named by Jun Liu and Fernando Abdala in 2022 based on a well-preserved skull with an associated lower jaw, catalogued as IVPP V 31137. Few postcranial remains, including six and some rib fragments, also come from this specimen, but they are not described by the two authors. The specific epithet is named in honor of Liu Yu-Dong, the technician who discovered the holotype specimen in 2020. This species originated from the Naobaogou Formation of Inner Mongolia, which is dated more broadly to the Lopingian epoch (which contains the Wuchiapingian). The formation is divided into three members based on cyclic sediments, numbere as members I, II, and III from oldest to youngest; E. liuyudongi originates from member I. Liu and colleagues had previously described a number of other new species from the middle portion of the Naobaogou Formation, which were among the 80 specimens that had been excavated from at least three field seasons after 2009.
According to the initial description, the eye socket of E. mirabilis was rather small. The branches of the postorbital bone and jugal bone that usually surround the back and bottom of the eye socket in therocephalians appear to be either very reduced or absent entirely. Meanwhile, the top of the eye socket is formed by the prefrontal bone, and the frontal bone is also small. The skull does not bear a pineal gland. Like Whaitsia, the pterygoid bone and palatine bone of the palate are not separated from the transpalatine, further to the side of the jaw, by any sort of opening. E. liuyudongi differs from E. mirabilis in several details of these bones: the frontal bone separates the prefrontal from contacting the postorbital, and the postorbital fenestrae at the back of the skull are slit-like instead of rounded. Additionally, the epipterygoid and prootic of the braincase are disconnected in E. liuyudongi.
The type specimen of E. mirabilis preserves the right canine tooth. Like other therocephalians, its canine was very large, resulting in a specialized predatory lifestyle that incorporates a sabertooth bite into prey killing. It is round in cross-section, and bears a prominent ridge on the side of its front surface. Immediately beside this ridge is a shallow depression that becomes wider near the top of the tooth, which is probably the same structure as the groove interpreted by some authors. Unlike E. mirabilis, however, the canines of E. liuyudongi had neither ridges nor grooves. Theriodonts usually replace their teeth in an alternating (or distichial) pattern, such that the canine tooth is always functional; both skulls of E. mirabilis show no sign of any replacement canines developing, suggesting that it was reliant on having both canines present and functional simultaneously.
CT scanning shows that the openings of E. mirabilis lead to canals that connect to the trigeminal nerve, which controls facial sensitivity. The forward-directed canal also splits into the three main branches of the infraorbital nerve, all of which connect to the socket of the canine; the junction occurs about along the canal, another point of variation between the two skulls. The top branch, the external nasal ramus, splits into four branches in the type skull, but it does not split in the second skull. In other like Thrinaxodon, Bauria, and Olivierosuchus, the external nasal ramus generally splits into three or more branches. All of these canals would have brought nerves and nutrient-rich tissue to the root of the canines and the rest of the upper jaw.
The 1986 phylogenetic analysis of James Hopson and Herb Barghusen supported Mendez's hypothesis of three subfamilies within Moschorhinidae, but they elected to use the name Euchambersiidae. In 2009, Adam Huttenlocker argued that the names Annatherapsididae, Moschorhinidae, and Euchambersiidae are junior synonyms of Akidnognathidae, since Akidnognathus (which also belongs in the same family) was named first before any other member of the family. This name has reached wider acceptance among researchers. Huttenlocker and Christian Sidor also later redefined Moschorhininae as all of Akidnognathidae save for Annatherapsidus and Akidnognathus.
In 2008, Mikhail Ivakhnenko included the Akidnognathidae (as the Euchambersiidae) as the sister group of the family Whaitsiidae in the superfamily Whaitsioidea. However, other researchers do not include the Akidnognathidae in the Whaitsioidea. Phylogenies by Huttenlocker and Sidor found that the Akidnognathidae was instead closest to the Chthonosauridae, with the two forming the sister group to the group containing the Whaitsioidea and the Baurioidea. Liu and Abdala performed a new phylogenetic analysis in 2022 for the description of E. liuyudongi. They found that the two species form a unified group within the Akidnognathidae, with the rest of the topology being similar to the one found by Huttenlocker and Sidor. The topology recovered by their analysis is shown below, with group labels following Huttenlocker and Sidor.
Much of this acceptance has been based on the erroneous assumption that the canines are grooved instead of ridged; grooved canines in Euchambersia would parallel the fangs of various venomous snakes as well as the venom-delivering incisors of the living . This interpretation, which has consistently appeared in literature published after 1986, was determined by Julien Benoit to be the result of the propagation of Broom's overly reconstructed diagram of the skull, without the context of the actual specimens. He thus considered it necessary to re-evaluate the hypothesis of a venomous bite in Euchambersia. Additionally, Benoit argued that grooved and ridged canines are not necessarily associated with venomous animals either, as shown by their presence in hippopotamus, muntjacs, and , in which they play a role in grooming or sharpening the teeth; in the latter two, ridged canines are also accompanied by a distinct fossa in front of the eye, which is entirely unconnected with venom. Furthermore, grooved and ridged teeth in non-venomous snakes are used to reduce suctional drag when capturing slippery prey like fish or invertebrates.
CT scanning of the known specimens of Euchambersia by Benoit and colleagues was subsequently used to provide more concrete support in favour of the venom hypothesis. The canals leading into and from the maxillary fossae, as revealed by the scans, would primarily have supported the trigeminal nerve as well as blood vessels. However, the fact that the canals also directly lead to the root of the canines would suggest that they had a secondary role in venom delivery. In all, Euchambersia seems to have had a venom gland (housed in the maxillary fossae), a delivery mechanism of the venom (the maxillary canals), and an instrument by which a wound for venom delivery can be inflicted (the ridged canines), which satisfy the criteria of a venomous animal as defined by Wolfgang Bücherl.
An alternate hypothesis suggested by Benoit et al. involves some kind of sensory organ occupying the maxillary fossa. Uniquely among therapsids, the canal within the maxilla is exposed on the back side of the maxillary fossa, which implies that the canal, carrying the trigeminal nerve, would probably have extended across the fossa, outside of the outline of the skull. Benoit et al. hypothesized that the fossa may have supported a specialized sensory organ analogous to the pit organ of and some other snakes, or alternatively a ganglion of nerve cells. It is also possible that this organ functioned as a replacement for the parietal eye in Euchambersia, like the pit organ does in pit vipers. However, such an expanded sensory organ would be unprecedented among , and the few other therocephalians that also lack a parietal eye do not have a maxillary fossa either. Thus, Benoit et al. considered the venom hypothesis as being more plausible.
However, in the well-preserved specimen of the second species, E. liuyudongi, neither the snout nor the orbit showed signs of the venomous gland. Only the preorbital (scent) glands are found, supporting the "scent gland hypothesis," although CT scans are required for more knowledge regarding the new species' dentition and skull.
In the Cistecephalus AZ, other co-occurring therocephalians included Hofmeyria, Homodontosaurus, Ictidostoma, Ictidosuchoides, Ictidosuchops, Macroscelesaurus, Polycynodon, and Proalopecopsis. More numerous, however, were the gorgonopsians, which included Aelurognathus, Aelurosaurus, Aloposaurus, Arctognathus, Arctops, Cerdorhinus, Clelandina, Cyonosaurus, Dinogorgon, Gorgonops, Lycaenops, Leontocephalus, Pardocephalus, Prorubidgea, Rubidgea, Scylacops, Scymnognathus, and Sycosaurus.
By far the most abundant herbivore was the dicynodont Diictodon, with over 1900 known specimens from the Cistecephalus AZ. Other dicynodonts included Aulacephalodon, Cistecephalus, Dicynodon, Dicynodontoides, Digalodon, Dinanomodon, Emydops, Endothiodon, Kingoria, Kitchinganomodon, Oudenodon, Palemydops, Pelanomodon, Pristerodon, and Rhachiocephalus. The Lemurosaurus, Lycaenodon, Paraburnetia, and Rubidgina were also present, along with the Cynosaurus and Procynosuchus. Non-synapsids included the archosauromorpha Younginia; the Anthodon, Milleretta, Nanoparia, Owenetta, and Pareiasaurus; and the temnospondyli Rhinesuchus.
Like the Cistecephalus AZ and other Permian palaeoenvironments, dicynodonts were the most commonly preserved animal of the Naobaogou Formation. Daqingshanodon was described in 1989. Subsequently-discovered specimens consist of at least seven different types that may belong to separate species, with one described as Turfanodon, two related to Daqingshanodon, and three or four related to Jimusaria. Non-synapsids included the captorhinidae Gansurhinus; the parareptilian Elginia; and the Laosuchus.
Maxillary fossa and associated canals
Classification
Paleobiology
Venom
Paleoecology
E. mirabilis
E. liuyudongi
See also
|
|