EF-G ( elongation factor G, historically known as translocase) is a prokaryotic elongation factor involved in mRNA translation. As a GTPase, EF-G catalyzes the movement (translocation) of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome.
The five domains may be also separated into two super-domains. Super-domain I consists of Domains I and II, and super-domain II consists of Domains III - IV. Throughout translocation, super-domain I will remain relatively unchanged, as it is responsible for binding tightly to the ribosome. However, super-domain II will undergo a large rotational motion from the pre-translocational (PRE) state to the post-translocational (POST) state. Super-domain I is similar to the corresponding sections of EF-Tu. Super-domain II in the POST state mimics the tRNA molecule of the EF-Tu • GTP • aa-tRNA ternary complex.
As a GTPase, EF-G binds to the rotated ribosome near the A site in its GTP-bound state, and hydrolyzes GTP, releasing GDP and inorganic phosphate:
The hydrolysis of GTP allows for a large conformational change within EF-G, forcing the A/P tRNA to fully occupy the P site, the P/E tRNA to fully occupy the E site (and exit the ribosome complex), and the mRNA to shift three nucleotides down relative to the ribosome. The GDP-bound EF-G molecule then dissociates from the complex, leaving another free A-site where the elongation cycle can start again.
In a GTP-dependent manner, the subsequent recycling is catalyzed by a Class II release factor named RF3/prfC, Ribosome recycling factor (RRF), Initiation Factor 3 (IF3) and EF-G. The protein RF3 releases the Class I release factor so that it may occupy the ribosomal A site. EF-G hydrolyzes GTP and undergoes a large conformational change to push RF3 down the ribosome, which occurs alongside tRNA dissociation and promotes the ribosomal subunit rotation. This motion actively splits the B2a/B2b bridge, which connects the 30S and the 50S subunits, so that the ribosome can split. IF3 then isolates the 30S subunit to prevent re-association of the large and small subunits.
For example, the antibiotic thiostrepton prevents EF-G from binding stably to the ribosome, while the antibiotics dityromycin and GE82832 inhibit the activity of EF-G by preventing the translocation of the A site tRNA. Dityromycin and GE82832 do not affect the binding of EF-G to the ribosome, however.
The antibiotic fusidic acid is known to inhibit Staphylococcus aureus and other bacteria by binding to EF-G after one translocation event on the ribosome, preventing EF-G from dissociating. However, some bacterial strains have developed resistance to fusidic acid due to in the fusA gene, which prevents fusidic acid from binding to EF-G.
Elongation factors exist in all three domains of life with similar function on the ribosome. The Eukaryote and Archaea homologs of EF-G are eEF2 and aEF2, respectively. In bacteria (and some archaea), the fusA gene that encodes EF-G is found within the conserved str gene with the sequence 5′ - rpsL - rpsG - fusA - tufA - 3′. However, two other major forms of EF-G exist in some species of Spirochaetota, Planctomycetota, and δ- Proteobacteria (which has since been split and renamed Bdellovibrionota, Myxococcota, and Thermodesulfobacteriota), which form the spd group of bacteria that have elongation factors spdEFG1 and spdEFG2.
From spdEFG1 and spdEFG2 evolved the mitochondrial elongation factors mtEFG1 (GFM1) and mtEFG2 (GFM2), respectively. The two roles of EF-G in elongation and termination of protein translation are split amongst the mitochondrial elongation factors, with mtEFG1 responsible for translocation and mtEFG2 responsible for termination and ribosomal recycling with mitochondrial RRF.
|
|