Calcium ions (Ca2+) contribute to the physiology and biochemistry of organisms' cells. They play an important role in signal transduction pathways, where they act as a second messenger, in neurotransmitter release from neurons, in contraction of all muscle cell types, and in fertilization. Many require calcium ions as a cofactor, including several of the coagulation factors. Extracellular calcium is also important for maintaining the potential difference across excitable cell cell membrane, as well as proper bone formation.
Plasma calcium levels in mammals are tightly regulated,
Intracellular calcium is stored in which repetitively release and then reaccumulate Ca2+ ions in response to specific cellular events: storage sites include mitochondria and the endoplasmic reticulum.
Characteristic concentrations of calcium in model organisms are: in E. coli 3 Millimolar (bound), 100 Nanomolar (free), in budding yeast 2 mM (bound), in mammalian cell 10–100 nM (free) and in blood plasma 2 mM.
+ Age-adjusted daily calcium recommendations (from U.S. Institute of Medicine RDAs) | |
1–3 years | 700 |
4–8 years | 1000 |
9–18 years | 1300 |
19–50 years | 1000 |
>51 years | 1000 |
Pregnancy | 1000 |
Lactation | 1000 |
]]
In 2022, it was the 277th most commonly prescribed medication in the United States, with more than 700,000 prescriptions.
Because of concerns of long-term adverse side effects such as calcification of arteries and kidney stones, the IOM and EFSA both set Tolerable Upper Intake Levels (ULs) for the combination of dietary and supplemental calcium. From the IOM, people ages 9–18 years are not supposed to exceed 3,000 mg/day; for ages 19–50 not to exceed 2,500 mg/day; for ages 51 and older, not to exceed 2,000 mg/day. The EFSA set UL at 2,500 mg/day for adults but decided the information for children and adolescents was not sufficient to determine ULs.
In 2005, the FDA approved a Qualified Health Claim for calcium and hypertension in light of the evidence available at that time, with suggested wording "Some scientific evidence suggests that calcium supplements may reduce the risk of hypertension. However, FDA has determined that the evidence is inconsistent and not conclusive." Evidence for pregnancy-induced hypertension and preeclampsia was considered inconclusive. Qualified Health Claims: Letter of Enforcement Discretion – Calcium and Hypertension; Pregnancy-Induced Hypertension; and Preeclampsia (Docket No. 2004Q-0098) U.S. Food and Drug Administration (2005). The same year, the FDA approved a QHC for calcium and colon cancer, with suggested wording "Some evidence suggests that calcium supplements may reduce the risk of colon/rectal cancer, however, FDA has determined that this evidence is limited and not conclusive." Evidence for breast cancer and prostate cancer was considered inconclusive.
target="_blank" rel="nofollow"> Qualified Health Claims: Letter Regarding Calcium and Colon/Rectal, Breast, and Prostate Cancers and Recurrent Colon Polyps (Docket No. 2004Q-0097) U.S. Food and Drug Administration (2005). Proposals for QHCs for calcium as protective against kidney stones or against menstrual disorders or pain were rejected.
target="_blank" rel="nofollow"> Qualified Health Claims: Letter of Denial – Calcium and Kidney Stones; Urinary Stones; and Kidney Stones and Urinary Stones (Docket No. 2004Q-0102) U.S. Food and Drug Administration (2005).
target="_blank" rel="nofollow"> Qualified Health Claims: Letters of Denial - Calcium and a Reduced Risk Of Menstrual Disorders (Docket No. 2004Q-0099) U.S. Food and Drug Administration (2005)
The European Food Safety Authority (EFSA) concluded that "Calcium contributes to the normal development of bones." Calcium and contribution to the normal development of bones: evaluation of a health claim European Food Safety Authority (2016). The EFSA rejected a claim that a cause-and-effect relationship existed between the dietary intake of calcium and potassium and maintenance of normal acid-base balance. Scientific Opinion on the substantiation of health claims related to calcium and potassium and maintenance of normal acid-base balance European Food Safety Authority (2011). The EFSA also rejected claims for calcium and nails, hair, blood lipids, premenstrual syndrome and body weight maintenance. Scientific Opinion on the substantiation of health claims related to calcium and maintenance of normal bone and teeth (ID 2731, 3155, 4311, 4312, 4703), maintenance of normal hair and nails (ID 399, 3155), maintenance of normal blood LDL-cholesterol concentrations (ID 349, 1893), maintenance of normal blood HDL-cholesterol concentrations (ID 349, 1893), reduction in the severity of symptoms related to the premenstrual syndrome (ID 348, 1892), "cell membrane permeability" (ID 363), reduction of tiredness and fatigue (ID 232), contribution to normal psychological functions (ID 233), contribution to the maintenance or achievement of a normal body weight (ID 228, 229) and regulation of normal cell division and differentiation EFSA Journal 2010;8(10):1725.
parmesan (cheese) = 1140 mg |
milk powder = 909 mg |
goat hard cheese = 895 mg |
Cheddar cheese = 720 mg |
tahini paste = 427 mg |
molasses = 273 mg |
sardines = 240 mg |
= 234 mg |
collard greens = 232 mg |
kale = 150 mg |
goat milk = 134 mg |
sesame seeds (unhulled) = 125 mg |
nonfat cow milk = 122 mg |
plain whole-milk yogurt = 121 mg |
= 114 mg |
tofu, soft = 114 mg |
beet greens = 114 mg |
spinach = 99 mg |
(skimmed milk cheese) = 90 mg |
= 79 mg |
= 53 mg |
Rolled oats = 52 mg |
eggs, boiled = 50 mg |
orange = 40 mg |
human milk = 33 mg |
rice, white, long-grain = 19 mg |
beef = 12 mg |
cod = 11 mg |
>+ Reference ranges for blood tests for calcium | '''Unit''' |
mmol/L | |
mg/dL | |
mmol/L | |
mg/dL |
The main methods to measure serum calcium are:Clin Chem. 1992 Jun;38(6):904–08. Single stable reagent (Arsenazo III) for optically robust measurement of calcium in serum and plasma. Leary NO, Pembroke A, Duggan PF.
The total amount of Ca2+ present in a tissue may be measured using Atomic absorption spectroscopy, in which the tissue is vaporized and combusted. To measure Ca2+ concentration or spatial distribution within the cell cytoplasm in vivo or in vitro, a range of fluorescent reporters may be used. These include cell permeable, calcium-binding fluorescent dyes such as Fura-2 or genetically engineered variant of green fluorescent protein (GFP) named Cameleon.
Different tissues contain calcium in different concentrations. For instance, Ca2+ (mostly calcium phosphate and some calcium sulfate) is the most important (and specific) element of bone and calcified cartilage. In humans, the total body content of calcium is present mostly in the form of bone mineral (roughly 99%). In this state, it is largely unavailable for exchange/bioavailability. The way to overcome this is through the process of bone resorption, in which calcium is liberated into the bloodstream through the action of bone osteoclasts. The remainder of calcium is present within the extracellular and intracellular fluids.
Within a typical cell, the intracellular concentration of ionized calcium is roughly 100 nM, but is subject to increases of 10- to 100-fold during various cellular functions. The intracellular calcium level is kept relatively low with respect to the extracellular fluid, by an approximate magnitude of 12,000-fold. This gradient is maintained through various plasma membrane that utilize ATP for energy, as well as a sizable storage within intracellular compartments. In electrically excitable cells, such as skeletal and cardiac muscles and neurons, membrane depolarization leads to a Ca2+ transient with cytosolic Ca2+ concentration reaching around 1 μM. Mitochondria are capable of sequestering and storing some of that Ca2+. It has been estimated that mitochondrial matrix free calcium concentration rises to the tens of micromolar levels in situ during neuronal activity.
Calcium's function in muscle contraction was found as early as 1882 by Ringer. Subsequent investigations were to reveal its role as a messenger about a century later. Because its action is interconnected with cyclic AMP, they are called synarchic messengers. Calcium can bind to several different calcium-modulated proteins such as troponin-C (the first one to be identified) and calmodulin, proteins that are necessary for promoting contraction in muscle.
In the endothelial cells which line the inside of blood vessels, Ca2+ ions can regulate several signaling pathways which cause the smooth muscle surrounding blood vessels to relax. Some of these Ca2+-activated pathways include the stimulation of eNOS to produce nitric oxide, as well as the stimulation of Kca channels to efflux K+ and cause hyperpolarization of the cell membrane. Both nitric oxide and hyperpolarization cause the smooth muscle to relax in order to regulate the amount of tone in blood vessels.Christopher J Garland, C Robin Hiley, Kim A Dora. EDHF: spreading the influence of the endothelium. British Journal of Pharmacology. 164:3, 839–52. (2011). However, dysfunction within these Ca2+-activated pathways can lead to an increase in tone caused by unregulated smooth muscle contraction. This type of dysfunction can be seen in cardiovascular diseases, hypertension, and diabetes.Hua Cai, David G. Harrison. Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circulation Research. 87, 840–44. (2000).
Calcium coordination plays an important role in defining the structure and function of proteins. An example a protein with calcium coordination is von Willebrand factor (vWF) which has an essential role in blood clot formation process. It was discovered using single molecule optical tweezers measurement that calcium-bound vWF acts as a shear force sensor in the blood. Shear force leads to unfolding of the A2 domain of vWF whose refolding rate is dramatically enhanced in the presence of calcium.Jakobi AJ, Mashaghi A, Tans SJ, Huizinga EG. Calcium modulates force sensing by the von Willebrand factor A2 domain. Nature Communications 2011 Jul 12;2:385. [9]
↑Vasodilation |
↑Secretion (vesicle fusion) |
↓Secretion (2025). 9781416023289, Elsevier/Saunders. ISBN 9781416023289 |
↓Secretion |
Transmission (vesicle fusion), neural adaptation |
Activation in response to antigen presentation to the T cell receptor |
|
Activation of protein kinase C Further reading: Function of protein kinase C |
Ca2+ ions can damage cells if they enter in excessive numbers (for example, in the case of excitotoxicity, or over-excitation of , which can occur in neurodegenerative diseases, or after insults such as brain trauma or stroke). Excessive entry of calcium into a cell may damage it or even cause it to undergo apoptosis, or death by necrosis. Calcium also acts as one of the primary regulators of osmotic stress (osmotic shock). Chronically elevated plasma calcium (hypercalcemia) is associated with cardiac arrhythmias and decreased neuromuscular excitability. One cause of hypercalcemia is a condition known as hyperparathyroidism.
Calcium is needed to form the pectin in the middle lamella of newly formed cells.
Calcium is needed to stabilize the permeability of cell membranes. Without calcium, the cell walls are unable to stabilize and hold their contents. This is particularly important in developing fruits. Without calcium, the cell walls are weak and unable to hold the contents of the fruit.
Some accumulate Ca in their tissues, thus making them more firm. Calcium is stored as Ca-oxalate crystals in .
|
|