Canals or artificial waterways are or engineered channels built for drainage management (e.g. flood control and irrigation) or for conveyancing water transport watercraft (e.g. water taxi). They carry free, calm surface flow under atmospheric pressure, and can be thought of as artificial .
In most cases, a canal has a series of and locks that create of low speed current flow. These reservoirs are referred to as slack water levels, often just called levels. A canal can be called a navigation canal when it parallels a natural river and shares part of the latter's discharges and drainage basin, and leverages its resources by building dams and locks to increase and lengthen its stretches of slack water levels while staying in its valley.
A canal can cut across a drainage divide atop a ridge, generally requiring an external water source above the highest elevation. The best-known example of such a canal is the Panama Canal.
Many canals have been built at elevations, above valleys and other waterways. Canals with sources of water at a higher level can deliver water to a destination such as a city where water is needed. The Roman Empire's aqueducts were such water supply canals.
The term was once used to describe linear features seen on the surface of Mars, Martian canals, an optical illusion.
A true canal is a channel that cuts across a drainage divide, making a navigable channel connecting two different .
Since they cut across drainage divides, canals are more difficult to construct and often need additional improvements, like and aqueducts to bridge waters over streams and roads, and ways to keep water in the channel.
The few canals still in operation in the 21st century are a fraction of the number that were once maintained during the earlier part of the Industrial Revolution. Their replacement was gradual, beginning first in the United Kingdom in the 1840s, where canal shipping was first augmented by, and later superseded by the much faster, less geographically constrained, and generally cheaper to maintain .
By the early 1880s, many canals which had little ability to compete with rail transport were abandoned. In the 20th century, oil was increasingly used as the heating fuel of choice, and the growth of coal shipments began to decrease. After the First World War, technological advances in Truck as well as expanding road networks saw increasing amounts of freight being transported by road, and the last small U.S. barge canals saw a steady decline in cargo ton-miles.
The once critical smaller inland waterways conceived and engineered as boat and barge canals have largely been supplanted and filled in, abandoned and left to deteriorate, or kept in service under a park service and staffed by government employees, where dams and locks are maintained for flood control or pleasure boating. Today, most (intended for larger, oceangoing vessels) service primarily service bulk cargo and large industries.
The longest extant canal today, the Grand Canal in northern China, still remains in heavy use, especially the portion south of the Yellow River. It stretches from Beijing to Hangzhou at 1,794 kilometres (1,115 miles).
Smaller transportation canals can carry or , while allow seagoing ships to travel to an inland port (e.g., Manchester Ship Canal), or from one sea or ocean to another (e.g., Caledonian Canal, Panama Canal).
Canals need to be level, and while small irregularities in the lie of the land can be dealt with through cuttings and embankments, for larger deviations other approaches have been adopted. The most common is the pound lock, which consists of a chamber within which the water level can be raised or lowered connecting either two pieces of canal at a different level or the canal with a river or the sea. When there is a hill to be climbed, flights of many locks in short succession may be used.
Prior to the development of the pound lock in 984 AD in China by Chhaio Wei-Yo and later in Europe in the 15th century, either consisting of a single gate were used or ramps, sometimes equipped with rollers, were used to change the level. Flash locks were only practical where there was plenty of water available.
Locks use a lot of water, so builders have adopted other approaches for situations where little water is available. These include , such as the Falkirk Wheel, which use a caisson of water in which boats float while being moved between two levels; and inclined planes where a caisson is hauled up a steep railway.
To cross a stream, road or valley (where the delay caused by a flight of locks at either side would be unacceptable) the valley can be spanned by a navigable aqueduct – a famous example in Wales is the Pontcysyllte Aqueduct (now a UNESCO World Heritage Site) across the valley of the River Dee.
Another option for dealing with hills is to tunnel through them. An example of this approach is the Harecastle Tunnel on the Trent and Mersey Canal. Tunnels are only practical for smaller canals.
Some canals attempted to keep changes in level down to a minimum. These canals known as would take longer, winding routes, along which the land was a uniform altitude. Other, generally later, canals took more direct routes requiring the use of various methods to deal with the change in level.
Canals have various features to tackle the problem of water supply. In cases, like the Suez Canal, the canal is open to the sea. Where the canal is not at sea level, a number of approaches have been adopted. Taking water from existing rivers or springs was an option in some cases, sometimes supplemented by other methods to deal with seasonal variations in flow. Where such sources were unavailable, reservoirs – either separate from the canal or built into its course – and back pumping were used to provide the required water. In other cases, water pumped from mines was used to feed the canal. In certain cases, extensive "feeder canals" were built to bring water from sources located far from the canal.
Where large amounts of goods are loaded or unloaded such as at the end of a canal, a canal basin may be built. This would normally be a section of water wider than the general canal. In some cases, the canal basins contain and cranes to assist with movement of goods.
When a section of the canal needs to be sealed off so it can be drained for maintenance stop planks are frequently used. These consist of planks of wood placed across the canal to form a dam. They are generally placed in pre-existing grooves in the canal bank. On more modern canals, "guard locks" or gates were sometimes placed to allow a section of the canal to be quickly closed off, either for maintenance, or to prevent a major loss of water due to a canal breach.
A canal fall is constructed by cut and fill. It may be combined with a regulator, bridge, or other structure to save costs.
There are various types of canal falls, based on their shape. One type is the ogee fall, where the drop follows an s-shaped curve to create a smooth transition and reduce turbulence. However, this smooth transition does not dissipate the water's kinetic energy, which leads to heavy scouring. As a result, the canal needs to be reinforced with concrete or masonry to protect it from eroding.
Another type of canal fall is the vertical fall, which is "simple and economical". These feature a "cistern", or depressed area just downstream from the fall, to "cushion" the water by providing a deep pool for its kinetic energy to be diffusion in. Vertical falls work for drops of up to 1.5 m in height, and for discharge of up to 15 cubic meters per second.
In the 5th century BC, Achaemenid king Xerxes I of Persia ordered the construction of the Xerxes Canal through the base of Mount Athos peninsula, Chalkidiki, northern Greece.Herodotus VII, 22 It was constructed as part of his preparations for the Second Persian invasion of Greece, a part of the Greco-Persian Wars. It is one of the few monuments left by the Persian Empire in Europe.B. S. J. Isserlin, R. E. Jones, V. Karastathis, S. P. Papamarinopoulos, G. E. Syrides and J. Uren "The Canal of Xerxes: Summary of Investigations 1991-2001" The Annual of the British School at Athens Vol. 98 (2003), pp. 369–385 .
Greek engineers were also among the first to use canal locks, by which they regulated the water flow in the Ancient Suez Canal as early as the 3rd century BC.Moore, Frank Gardner (1950): "Three Canal Projects, Roman and Byzantine", American Journal of Archaeology, Vol. 54, No. 2, pp. 97–111 (99–101)Froriep, Siegfried (1986): "Ein Wasserweg in Bithynien. Bemühungen der Römer, Byzantiner und Osmanen", Antike Welt, 2nd Special Edition, pp. 39–50 (46)Schörner, Hadwiga (2000): "Künstliche Schiffahrtskanäle in der Antike. Der sogenannte antike Suez-Kanal", Skyllis, Vol. 3, No. 1, pp. 28–43 (33–35)
There was little experience moving bulk loads by carts, while a pack-horse would i.e. carry only an eighth of a ton. On a soft road a horse might be able to draw 5/8ths of a ton. But if the load were carried by a barge on a waterway, then up to 30 tons could be drawn by the same horse.
— technology historian Ronald W. Clark referring to transport realities before the industrial revolution and the Canal age. "Works of Man", Ronald W. Clark, (1985) 352 pages, Viking Penguin, Inc, New York,
quotation p. 87: "There was little experience moving bulk loads by carts, while a packhorse would sic, carry only an eighth of a ton. On a soft road a horse might be able to draw 5/8ths of a ton. But if the load were carried by a barge on a waterway, then up to 30 tons could be drawn by the same horse.
Hohokam was a society in the North American Southwest in what is now part of Arizona, United States, and Sonora, Mexico. Their irrigation systems supported the largest population in the Southwest by 1300 CE. Archaeologists working at a major archaeological dig in the 1990s in the Tucson Basin, along the Santa Cruz River, identified a culture and people that may have been the ancestors of the Hohokam.2007-036 General COP Treatment Plan; Pueblo Grande Museum Project 2007–95; City of Phoenix Project No. ST87350010; p. 9 Cultural Context This prehistoric group occupied southern Arizona as early as 2000 BCE, and in the Early Agricultural period grew corn, lived year-round in sedentary villages, and developed sophisticated irrigation canals. The large-scale Hohokam irrigation network in the Phoenix metropolitan area was the most complex in ancient North America. A portion of the ancient canals has been renovated for the Salt River Project and now helps to supply the city's water.
The Sinhalese people constructed the 87 km (54 mi) Yodha Ela in 459 A.D. as a part of their extensive irrigation network which functioned in a way of a moving reservoir due to its single banking aspect to manage the canal pressure with the influx of water. It was also designed as an elongated reservoir passing through traps creating 66 mini catchments as it flows from Kala Wewa to Thissa Wawa. The canal was not designed for the quick conveying of water from Kala Wewa to Thissa Wawa but to create a mass of water between the two reservoirs, which would in turn provide for agriculture and the use of humans and animals. They also achieved a rather low gradient for its time. The canal is still in use after renovation.
In Britain, the Glastonbury Canal is believed to be the first post-Roman canal and was built in the middle of the 10th century to link the River Brue at Northoverspecifically from (), Start point at River Brue with Glastonbury Abbey, a distance of about .Details text and data with cites from Glastonbury Canal (medieval). Its initial purpose is believed to be the transport of building stone for the abbey, but later it was used for delivering produce, including grain, wine and fish, from the abbey's outlying properties. It remained in use until at least the 14th century, but possibly as late as the mid-16th century.
More lasting and of more economic impact were canals like the Naviglio Grande built between 1127 and 1257 to connect Milan with the river Ticino. The Naviglio Grande is the most important of the Lombardy "navigli" and the oldest functioning canal in Europe.
Later, canals were built in the Netherlands and Flanders to drain the and assist transportation of goods and people.
Canal building was revived in this age because of commercial expansion from the 12th century. River navigations were improved progressively by the use of single, or . Taking boats through these used large amounts of water leading to conflicts with watermill owners and to correct this, the Pound lock or chamber lock first appeared, in the 10th century in China and in Europe in 1373 in Vreeswijk, Netherlands. Another important development was the mitre gate, which was, it is presumed, introduced in Italy by Bertola da Novate in the 16th century. This allowed wider gates and also removed the height restriction of .
To break out of the limitations caused by river valleys, the first summit level canals were developed with the Grand Canal of China in 581–617 AD whilst in Europe the first, also using single locks, was the Stecknitz Canal in Germany in 1398.
Canal building progressed steadily in Germany in the 17th and 18th centuries with three great rivers, the Elbe, Oder and Weser being linked by canals. In post-Roman Britain, the first early modern period canal built appears to have been the Exeter Canal, which was surveyed in 1563, and open in 1566.Exeter history by www.exeter.gov.uk, .pdf file Exeter Ship Canal, The First Four Hundred Years , accessdate=13 September 2013
The oldest canal in the European settlements of North America, technically a mill race built for industrial purposes, is Mother Brook between the Boston neighbourhoods of Dedham and Hyde Park connecting the higher waters of the Charles River and the mouth of the Neponset River and the sea. It was constructed in 1639 to provide water power for mills.
In Russia, the Volga–Baltic Waterway, a nationwide canal system connecting the Baltic Sea and Caspian Sea via the Neva and Volga rivers, was opened in 1718.
By the early 18th century, river navigations such as the Aire and Calder Navigation were becoming quite sophisticated, with and longer and longer "cuts" (some with intermediate locks) to avoid circuitous or difficult stretches of river. Eventually, the experience of building long multi-level cuts with their own locks gave rise to the idea of building a "pure" canal, a waterway designed on the basis of where goods needed to go, not where a river happened to be.
The claim for the first pure canal in Great Britain is debated between "Sankey" and "Bridgewater" supporters. The first true canal in what is now the United Kingdom was the Newry Canal in Northern Ireland constructed by Thomas Steers in 1741.
The Sankey Canal, which connected St Helens with the River Mersey, is often claimed as the first modern "purely artificial" canal because although originally a scheme to make the Sankey Brook navigable, it included an entirely new artificial channel that was effectively a canal along the Sankey Brook valley.Rolt, Inland Waterways However, "Bridgewater" supporters point out that the last quarter-mile of the navigation is indeed a canalized stretch of the Brook, and that it was the Bridgewater Canal (less obviously associated with an existing river) that captured the popular imagination and inspired further canals.
In the mid-eighteenth century the 3rd Duke of Bridgewater, who owned a number of in northern England, wanted a reliable way to transport his coal to the rapidly industrializing city of Manchester. He commissioned the engineer James Brindley to build a canal for that purpose. Brindley's design included an aqueduct carrying the canal over the River Irwell. This was an engineering wonder which immediately attracted tourists. The construction of this canal was funded entirely by the Duke and was called the Bridgewater Canal. It opened in 1761 and was the first major British canal.
The new canals proved highly successful. The boats on the canal were horse-drawn with a towpath alongside the canal for the horse to walk along. This horse-drawn system proved to be highly economical and became standard across the British canal network. Commercial horse-drawn canal boats could be seen on the UK's canals until as late as the 1950s, although by then diesel-powered boats, often towing a second unpowered boat, had become standard.
The canal boats could carry thirty tons at a time with only one horse pulling – more than ten times the amount of cargo per horse that was possible with a cart. Because of this huge increase in supply, the Bridgewater canal reduced the price of coal in Manchester by nearly two-thirds within just a year of its opening. The Bridgewater was also a huge financial success, with it earning what had been spent on its construction within just a few years.
This success proved the viability of canal transport, and soon industrialists in many other parts of the country wanted canals. After the Bridgewater canal, early canals were built by groups of private individuals with an interest in improving communications. In Staffordshire the famous potter Josiah Wedgwood saw an opportunity to bring bulky cargoes of clay to his factory doors and to transport his fragile finished goods to market in Manchester, Birmingham or further away, by water, minimizing breakages. Within just a few years of the Bridgewater's opening, an embryonic national canal network came into being, with the construction of canals such as the Oxford Canal and the Trent & Mersey Canal.
The new canal system was both cause and effect of the rapid industrialization of The Midlands and the north. The period between the 1770s and the 1830s is often referred to as the "Golden Age" of British canals.
For each canal, an Act of Parliament was necessary to authorize construction, and as people saw the high incomes achieved from canal tolls, canal proposals came to be put forward by investors interested in profiting from dividends, at least as much as by people whose businesses would profit from cheaper transport of raw materials and finished goods.
In a further development, there was often out-and-out speculation, where people would try to buy shares in a newly floated company to sell them on for an immediate profit, regardless of whether the canal was ever profitable, or even built. During this period of "Canal Mania", huge sums were invested in canal building, and although many schemes came to nothing, the canal system rapidly expanded to nearly 4,000 miles (over 6,400 kilometres) in length.
Many rival canal companies were formed and competition was rampant. Perhaps the best example was Worcester Bar in Birmingham, a point where the Worcester and Birmingham Canal and the Birmingham Canal Navigations Main Line were only seven feet apart. For many years, a dispute about tolls meant that goods travelling through Birmingham had to be portaged from boats in one canal to boats in the other.
Canal companies were initially chartered by individual states in the United States. These early canals were constructed, owned, and operated by private joint-stock companies. Four were completed when the War of 1812 broke out; these were the South Hadley Canal (opened 1795) in Massachusetts, Santee Canal (opened 1800) in South Carolina, the Middlesex Canal (opened 1802) also in Massachusetts, and the Dismal Swamp Canal (opened 1805) in Virginia. The Erie Canal (opened 1825) was chartered and owned by the state of New York and financed by bonds bought by private investors. The Erie canal runs about from Albany, New York, on the Hudson River to Buffalo, New York, at Lake Erie. The Hudson River connects Albany to the Atlantic port of New York City and the Erie Canal completed a navigable water route from the Atlantic Ocean to the Great Lakes. The canal contains 36 locks and encompasses a total elevation differential of around 565 ft. (169 m). The Erie Canal with its easy connections to most of the U.S. mid-west and New York City soon quickly paid back all its invested capital (US$7 million) and started turning a profit. By cutting transportation costs in half or more it became a large profit center for Albany and New York City as it allowed the cheap transportation of many of the agricultural products grown in the mid west of the United States to the rest of the world. From New York City these agricultural products could easily be shipped to other U.S. states or overseas. Assured of a market for their farm products the settlement of the U.S. mid-west was greatly accelerated by the Erie Canal. The profits generated by the Erie Canal project started a canal building boom in the United States that lasted until about 1850 when started becoming seriously competitive in price and convenience. The Blackstone Canal (finished in 1828) in Massachusetts and Rhode Island fulfilled a similar role in the early industrial revolution between 1828 and 1848. The Blackstone Valley was a major contributor of the American Industrial Revolution where Samuel Slater built his first textile mill.
In the United States, navigable canals reached into isolated areas and brought them in touch with the world beyond. By 1825 the Erie Canal, long with 36 locks, opened up a connection from the populated Northeast to the Great Lakes. Settlers flooded into regions serviced by such canals, since access to markets was available. The Erie Canal (as well as other canals) was instrumental in lowering the differences in commodity prices between these various markets across America. The canals caused price convergence between different regions because of their reduction in transportation costs, which allowed Americans to ship and buy goods from farther distances much cheaper. Ohio built many miles of canal, Indiana had working canals for a few decades, and the Illinois and Michigan Canal connected the Great Lakes to the Mississippi River system until replaced by a channelized river waterway.
Three major canals with very different purposes were built in what is now Canada. The first Welland Canal, which opened in 1829 between Lake Ontario and Lake Erie, bypassing Niagara Falls and the Lachine Canal (1825), which allowed ships to skirt the nearly impassable rapids on the St. Lawrence River at Montreal, were built for commerce. The Rideau Canal, completed in 1832, connects Ottawa on the Ottawa River to Kingston, Ontario on Lake Ontario. The Rideau Canal was built as a result of the War of 1812 to provide military transportation between the British colonies of Upper Canada and Lower Canada as an alternative to part of the St. Lawrence River, which was susceptible to blockade by the United States.
In France, a steady linking of all the river systems – Rhine, Rhône, Saône and Seine – and the North Sea was boosted in 1879 by the establishment of the Freycinet gauge, which specified the minimum size of locks. Canal traffic doubled in the first decades of the 20th century.
Many notable sea canals were completed in this period, starting with the Suez Canal (1869) – which carries tonnage many times that of most other canals – and the Kiel Canal (1897), though the Panama Canal was not opened until 1914.
In the 19th century, a number of canals were built in Japan including the Biwako canal and the Tone canal. These canals were partially built with the help of engineers from the Netherlands and other countries.
A major question was how to connect the Atlantic and the Pacific with a canal through narrow Central America. (The Panama Railroad opened in 1855.) The original proposal was for a Nicaragua canal, taking advantage of the relatively large Lake Nicaragua. This canal has never been built in part because of political instability, which scared off potential investors. It remains an active project (the geography has not changed), and in the 2010s Chinese involvement was developing.
The second choice for a Central American canal was a Panama Canal. The De Lesseps company, which ran the Suez Canal, first attempted to build a Panama Canal in the 1880s. The difficulty of the terrain and weather (rain) encountered caused the company to go bankrupt. High worker mortality from disease also discouraged further investment in the project. DeLesseps' abandoned Excavator sits, isolated decaying machines, today tourist attractions.
Twenty years later, an expansionist United States, that just acquired colonies after defeating Spain in the 1898 Spanish–American War, and whose Navy became more important, decided to reactivate the project. The United States and Colombia did not reach agreement on the terms of a canal treaty (see Hay–Herrán Treaty). Panama, which did not have (and still does not have) a land connection with the rest of Colombia, was already thinking of independence. In 1903 the United States, with support from Panamanians who expected the canal to provide substantial wages, revenues, and markets for local goods and services, took Panama province away from Colombia, and set up a puppet state (Panama). Its currency, the Balboa – a name that suggests the country began as a way to get from one hemisphere to the other – was a replica of the US dollar. The US dollar was and remains legal tender (used as currency). A U.S. military zone, the Canal Zone, wide, with U.S. military stationed there (military bases, 2 TV stations, channels 8 and 10, Post exchange, a U.S.-style high school), split Panama in half. The Canal – a major engineering project – was built. The U.S. did not feel that conditions were stable enough to withdraw until 1979. The withdrawal from Panama contributed to President Jimmy Carter's defeat in 1980.
The narrow early industrial canals, however, have ceased to carry significant amounts of trade and many have been abandoned to navigation, but may still be used as a system for transportation of untreated water. In some cases railways have been built along the canal route, an example being the Croydon Canal.
A movement that began in Britain and France to use the early industrial canals for pleasure boats, such as , has spurred rehabilitation of stretches of historic canals. In some cases, abandoned canals such as the Kennet and Avon Canal have been restored and are now used by pleasure boaters. In Britain, canalside housing has also proven popular in recent years.
The Seine–Nord Europe Canal is being developed into a major transportation waterway, linking France with Belgium, Germany, and the Netherlands.
Canals have found another use in the 21st century, as for the installation of fibre optic telecommunications network cabling, avoiding having them buried in roadways while facilitating access and reducing the hazard of being damaged from digging equipment.
Canals are still used to provide water for agriculture. An extensive canal system exists within the Imperial Valley in the Southern California desert to provide irrigation to agriculture within the area.
Amsterdam was built in a similar way, with buildings on wooden piles. It became a city around 1300. Many Amsterdam canals were built as part of fortifications. They became when the city was enlarged and houses were built alongside the water. Its nickname as the "Venice of the North" is shared with Hamburg of Germany, St. Petersburg of Russia and Bruges of Belgium.
Suzhou was dubbed the "Venice of the East" by Marco Polo during his travels there in the 13th century, with its modern canalside Pingjiang Road and Shantang Street becoming major tourist attractions. Other nearby cities including Nanjing, Shanghai, Wuxi, Jiaxing, Huzhou, Nantong, Taizhou, Yangzhou, and Changzhou are located along the lower mouth of the Yangtze River and Lake Tai, yet another source of small rivers and creeks, which have been canalized and developed for centuries.
Other cities with extensive canal networks include: Alkmaar, Amersfoort, Bolsward, Brielle, Delft, Den Bosch, Dokkum, Dordrecht, Enkhuizen, Franeker, Gouda, Haarlem, Harlingen, Leeuwarden, Leiden, Sneek and Utrecht in the Netherlands; Bruges and Ghent in Flanders, Belgium; Birmingham in England; Saint Petersburg in Russia; Bydgoszcz, Gdańsk, Szczecin and Wrocław in Poland; Aveiro in Portugal; Hamburg and Berlin in Germany; Fort Lauderdale and Cape Coral in Florida, United States, Wenzhou in China, Cần Thơ in Vietnam, Bangkok in Thailand, and Lahore in Pakistan.
Liverpool Maritime Mercantile City was a UNESCO World Heritage Site near the centre of Liverpool, England, where a system of intertwining waterways and docks is now being developed for mainly residential and leisure use.
(sometimes known as bayous in the United States) are a form of subdivision popular in cities like Miami, Florida, Texas City, Texas and the Gold Coast, Queensland; the Gold Coast has over 890 km of residential canals. Wetlands are difficult areas upon which to build housing estates, so dredging part of the wetland down to a Navigability channel provides fill to build up another part of the wetland above the flood level for houses. Land is built up in a finger pattern that provides a suburban street layout of waterfront housing blocks.
Power canals
19th century
Modern uses
Cities on water
Boats
Lists of canals
Lists of proposed canals
See also
Notes
Bibliography
External links
|
|