Brachiosaurus () is a genus of sauropod dinosaur that lived in North America during the Late Jurassic, about 155.6 to 145.5 million years ago. It was first described by American paleontologist Elmer S. Riggs in 1903 from fossils found in the Colorado River valley in western Colorado, United States. Riggs named the dinosaur Brachiosaurus altithorax; the generic name is Ancient Greek for "arm lizard", in reference to its proportionately long arms, and the specific name means "deep chest". Brachiosaurus is estimated to have been between long; body mass estimates of the subadult holotype specimen range from . It had a disproportionately long neck, small skull, and large overall size, all of which are typical for sauropods. Atypically, Brachiosaurus had longer forelimbs than hindlimbs, which resulted in a steeply inclined Torso, and a proportionally shorter tail.
Brachiosaurus is the namesake genus of the family Brachiosauridae, which includes a handful of other similar sauropods. Most popular depictions of Brachiosaurus are in fact based on Giraffatitan, a genus of brachiosaurid dinosaur from the Tendaguru Formation of Tanzania. Giraffatitan was originally described by German paleontologist Werner Janensch in 1914 as a species of Brachiosaurus, B. brancai, but moved to its own genus in 2009. Three other species of Brachiosaurus have been named based on found in Africa and Europe; two are no longer considered valid, and a third has become a separate genus, Lusotitan.
The Holotype of B. altithorax is still the most complete specimen, and only a few other specimens are thought to belong to the genus, making it one of the rarer sauropods of the Morrison Formation. It is regarded as a high browser, possibly cropping or nipping vegetation as high as off the ground. Unlike other sauropods, it was unsuited for rearing on its hindlimbs. It has been used as an example of a dinosaur that was most likely ectothermic because of its large size and the corresponding need for sufficient forage, but more recent research suggests it was warm-blooded. Among the most iconic and initially thought to be one of the Dinosaur size, Brachiosaurus has appeared in popular culture, notably in the 1993 film Jurassic Park.
Riggs and company were working in the area as a result of favorable correspondence between Riggs and Stanton Merill Bradbury, a dentist in nearby Grand Junction. In the spring of 1899 Riggs had sent letters to mayors in western Colorado, inquiring after possible trails leading from railway heads into northeastern Utah, where he hoped to find fossils of Eocene mammals. To his surprise, he was informed by Bradbury, an amateur collector himself and president of the Western Colorado Academy of Science, that dinosaur bones had been collected near Grand Junction since 1885. Riggs was skeptical of this claim, but his superior, curator of geology Oliver Cummings Farrington, was very eager to add a large sauropod skeleton to the collection to outdo other institutions, and convinced the museum management to invest five hundred dollars in an expedition. Arriving on June 20, 1900, they set camp at the abandoned Goat Ranch. During a prospecting trip on horseback, Riggs's field assistant Harold William Menke found the humerus of FMNHP25107, on July 4, exclaiming it was "the biggest thing yet!". Riggs at first took the find for a badly preserved Brontosaurus specimen and gave priority to excavating Quarry 12, which held a more promising Morosaurus skeleton. Having secured that, on July 26 he returned to the humerus in Quarry 13, which soon proved to be of enormous size, convincing a puzzled Riggs that he had discovered the largest land animal ever.
The site, Riggs Quarry 13, is located on a small hill later known as Riggs Hill; it is today marked by a plaque. More Brachiosaurus fossils are reported on Riggs Hill, but other fossil finds on the hill have been vandalized. During excavation of the specimen, Riggs misidentified the humerus as a deformed femur due to its great length, and this seemed to be confirmed when an equally-sized, well-preserved real femur of the same skeleton was discovered. In 1904 Riggs noted: "Had it not been for the unusual size of the ribs found associated with it, the specimen would have been discarded as an Apatosaur, too poorly preserved to be of value." It was only after preparation of the fossil material in the laboratory that the bone was recognized as a humerus. The excavation attracted large numbers of visitors, delaying the work and forcing Menke to guard the site to prevent bones from being looted. On August 17, the last bone was jacketed in plaster. After a concluding ten-day prospecting trip, the expedition returned to Grand Junction and hired a team and wagon to transport all fossils to the railway station, during five days; another week was spent to pack them in thirty-eight crates with a weight of . On September 10, Riggs left for Chicago by train, arriving on the 15th; the railroad companies let both passengers and cargo travel for free, as a public relations gesture.
The holotype skeleton consists of the right humerus (upper arm bone), the right femur (thigh bone), the right ilium (a hip bone), the right coracoid (a shoulder bone), the sacrum (fused vertebrae of the hip), the last seven thoracic (trunk) and two caudal (tail) vertebrae, and several ribs. Riggs described the coracoid as from the left side of the body, but restudy has shown it to be a right coracoid. At the time of discovery, the lower end of the humerus, the underside of the sacrum, the ilium and the preserved caudal vertebrae were exposed to the air and thus partly damaged by weathering. The vertebrae were only slightly shifted out of their original anatomical position; they were found with their top sides directed downward. The ribs, humerus, and coracoid, however, were displaced to the left side of the vertebral column, indicating transportation by a water current. This is further evidenced by an isolated ilium of Diplodocus that apparently had drifted against the vertebral column, as well as by a change in composition of the surrounding rocks. While the specimen itself was embedded in fine-grained clay, indicating low-energy conditions at the time of deposition, it was cut off at the seventh presacral vertebra by a thick layer of much coarser sediments consisting of pebbles at its base and sandstone further up, indicating deposition under stronger currents. Based on this evidence, Riggs in 1904 suggested that the missing front part of the skeleton was washed away by a water current, while the hind part was already covered by sediment and thus got preserved.
Riggs published a short report of the new find in 1901, noting the unusual length of the humerus compared to the femur and the extreme overall size and the resulting giraffe-like proportions, as well as the lesser development of the tail, but did not publish a name for the new dinosaur. In 1903, he named the type species Brachiosaurus altithorax. Riggs derived the genus name from the Ancient Greek brachion/βραχίων meaning "arm" and sauros/σαυρος meaning "lizard", because he realized that the length of the arms was unusual for a sauropod. The specific epithet was chosen because of the unusually deep and wide chest cavity, from Latin altus "deep" and Greek thorax/θώραξ, "breastplate, cuirass, corslet". Latin thorax was derived from the Greek and had become a usual scientific designation for the chest of the body. The titles of Riggs's 1901 and 1903 articles emphasized that the specimen was the "largest-known dinosaur". Riggs followed his 1903 publication with a more detailed description in a monograph in 1904.
Preparation of the holotype began in the fall of 1900 shortly after it was collected by Riggs for the Field Museum. First the limb elements were processed. In the winter of 1904, the badly weathered vertebrae of the back and hip were prepared by James B. Abbott and C.T. Kline. As the preparation of each bone was finished, it was put on display in a glass case in Hall 35 of the Fine Arts Palace of the Worlds Columbian Exposition, the Field Museum's first location. All the bones were, solitarily, still on display by 1908 in Hall 35 when the Field Museum's newly mounted Apatosaurus was unveiled, the very specimen Riggs had found in Quarry 12, today catalogued as FMNH P25112 and identified as a Brontosaurus exemplar. No mount of Brachiosaurus was attempted because only twenty percent of the skeleton had been recovered. In 1993, the holotype bones were molded and cast, and the missing bones were sculpted based on material of the related Brachiosaurus brancai (now Giraffatitan) in Museum für Naturkunde, Berlin. This plastic skeleton was mounted and, in 1994, put on display at the north end of Stanley Field Hall, the main exhibit hall of the Field Museum's current building. The real bones of the holotype were put on exhibit in two large glass cases at either end of the mounted cast. The mount stood until 1999, when it was moved to the BConcourse of United Airlines' Terminal One in O'Hare International Airport to make room for the museum's newly acquired Tyrannosaurus skeleton, "Sue". At the same time, the Field Museum mounted a second plastic cast of the skeleton (designed for outside use) which was on display outside the museum on the NW terrace until 2022.
Another outdoor cast was sent to Disney's Animal Kingdom to serve as a gateway icon for the "DinoLand, U.S.A." area, known as the "Oldengate Bridge" that connects the two halves of the fossil quarry themed Boneyard play area.
In 1883, farmer Marshall Parker Felch, a fossil collector for the American paleontologist Othniel Charles Marsh, reported the discovery of a sauropod skull in Felch Quarry 1, near Garden Park, Colorado. The skull was found in yellowish white sandstone, near a cervical vertebra, which was destroyed during an attempt to collect it. The skull was cataloged as YPM 1986, and sent to Marsh at the Peabody Museum of Natural History, who incorporated it into his 1891 skeletal restoration of Brontosaurus (perhaps because Felch had identified it as belonging to that dinosaur). The Felch Quarry skull consists of the cranium, the maxillae, the right postorbital, part of the left maxilla, the left squamosal, the dentaries, and a possible partial Pterygoid bone. The bones were roughly prepared for Marsh, which led to some damage. Felch also collected several postcranial fossils, including a partial cervical vertebra and partial forelimb. Most of the specimens collected by Felch were sent to the National Museum of Natural History in 1899 after Marsh's death, including the skull, which was then cataloged as USNM 5730.
In 1975 the American paleontologists Jack McIntosh and David Berman investigated the historical issue of whether Marsh had assigned an incorrect skull to Brontosaurus (at the time thought to be a junior synonym of Apatosaurus), and found the Felch Quarry skull to be of "the general Camarasaurus type", while suggesting that the vertebra found near it belonged to Brachiosaurus. They concluded that if Marsh had not arbitrarily assigned the Felch quarry skull and another Camarasaurus-like skull to Brontosaurus, it would have been recognized earlier that the actual skull of Brontosaurus and Apatosaurus was more similar to that of Diplodocus. McIntosh later tentatively recognized the Felch Quarry skull as belonging to Brachiosaurus, and brought it to the attention of the American paleontologists Kenneth Carpenter and Virginia Tidwell, while urging them to describe it. They brought the skull to the Denver Museum of Natural History, where they further prepared it and made a reconstruction of it based on casts of the individual bones, with the skulls of Giraffatitan and Camarasaurus acting as templates for the missing bones.
In 1998 Carpenter and Tidwell described the Felch Quarry skull, and formally assigned it to Brachiosaurus sp. (of uncertain species), since it is impossible to determine whether it belonged to the species B. altithorax itself (as there is no overlapping material between the two specimens). They based the skull's assignment to Brachiosaurus on its similarity to that of B. brancai, later known as Giraffatitan. In 2019, American paleontologists Michael D. D'Emic and Matthew T. Carrano re-examined the Felch Quarry skull after having it further prepared and CT-scanned (while consulting historical illustrations that showed earlier states of the bones), and concluded that a quadrate bone and dentary tooth considered part of the skull by Carpenter and Tidwell did not belong to it. The quadrate is too large to articulate with the squamosal, is preserved differently from the other bones, and was found several meters away. The tooth does not resemble those within the jaws (as revealed by CT data), is larger, and was therefore assigned to Camarasaurus sp. (other teeth assignable to that genus are known from the quarry). They also found it most parsimonious to assign the skull to B. altithorax itself rather than an unspecified species, as there is no evidence of other brachiosaurid taxa in the Morrison Formation (and adding this and other possible elements to a phylogenetic analysis did not change the position of B. altithorax).
A shoulder blade with coracoid from Dry Mesa Quarry, Colorado, is one of the specimens at the center of the Supersaurus/ Ultrasauros issue of the 1980s and 1990s. In 1985 James A. Jensen described disarticulated sauropod remains from the quarry as belonging to several exceptionally large taxa, including the new genera Supersaurus and Ultrasaurus, the latter renamed Ultrasauros shortly thereafter because Ultrasaurus had already received the name. Later study showed that the "ultrasaur" material mostly belonged to Supersaurus, though the shoulder blade did not. Because the holotype of Ultrasauros, a dorsal vertebra, was one of the specimens that was actually from Supersaurus, the name Ultrasauros is a synonym of Supersaurus. The shoulder blade, specimen BYU 9462 (previously BYU 5001), was in 1996 assigned to a Brachiosaurus sp. (of uncertain species) by Brian Curtice and colleagues; in 2009 Michael P. Taylor concluded that it could not be referred to B. altithorax. The Dry Mesa "ultrasaur" was not as large as had been thought; the dimensions of the shoulder's coracoid bone indicate that the animal was smaller than Riggs's original specimen of Brachiosaurus.
Several additional specimens were briefly described by Jensen in 1987. One of these finds, the humerus USNM 21903, was discovered in ca. 1943 by uranium prospectors Vivian and Daniel Jones in the Potter Creek Quarry in western Colorado, and donated to the Smithsonian Institution. Originally, this humerus was part of a poorly preserved partial skeleton that was not collected. According to Taylor in 2009, it is not clearly referable to Brachiosaurus despite its large size of . Jensen himself worked at the Potter Creek site in 1971 and 1975, excavating the disarticulated specimen BYU 4744, which contains a mid-dorsal vertebra, an incomplete left ilium, a left radius and a right metacarpal. According to Taylor in 2009, this specimen can be confidently referred to B. altithorax, as far as it is overlapping with its type specimen. Jensen further mentioned a specimen discovered near Jensen, Utah, that includes a rib in length, an anterior cervical vertebra, part of a scapula, and a coracoid, although he did not provide a description. In 2001, Curtice and Stadtman ascribed two articulated dorsal vertebrae (specimen BYU 13023) from Dry Mesa Quarry to Brachiosaurus. Taylor, in 2009, noted that these vertebrae are markedly shorter than those of the B. altithorax holotype, although otherwise being similar.
In 2012, José Carballido and colleagues reported a nearly complete postcranial skeleton of a small juvenile approximately in length. This specimen, nicknamed "Toni" and cataloged as SMA 0009, stems from the Morrison Formation of the Bighorn Basin in north-central Wyoming. Although originally thought to belong to a diplodocid, it was later reinterpreted as a brachiosaurid, probably belonging to B. altithorax. In 2018, the largest sauropod foot ever found was reported from the Black Hills of Weston County, Wyoming. The femur is not preserved but comparisons suggest that it was about two percent longer than that of the B. altithorax holotype. Though possibly belonging to Brachiosaurus, the authors cautiously classified it as an indeterminate brachiosaurid. However, the assignment of these two specimens to their respective clades was later questioned by D'Emic and Carrano in 2019. They considered the referral of "Toni" to B. altithorax be based on mistaken interpretations of the species' unique features or of the specimen itself, and deemed it worthy of further study. Analyzing photos of the large foot, D'Emic and Carrano noted that the only feature that allowed referral to Brachiosauridae may have been influenced by damage to the bone it was found on, but did state that "general similarities" with Sonorasaurus and Giraffatitan suggested brachiosaurid affinities, but this, the authors stated, would be confirmed only through further study.
There was ample material referred to B. brancai in the collections of the Museum für Naturkunde in Berlin, some of which was destroyed during World War II. Other material was transferred to other institutions throughout Germany, some of which was also destroyed. Additional material was collected by the British Museum of Natural History's Tendaguru expedition, including a nearly complete skeleton (BMNH R5937) collected by F.W.H. Migeod in 1930. This specimen is now believed to represent a new species, awaiting description.
Janensch based his description of B. brancai on "Skelett S" (skeleton S) from Tendaguru, but later realized that it comprised two partial individuals: SI and SII. He at first did not designate them as a syntype series, but in 1935 made SI (presently MB.R.2180) the lectotype. Taylor in 2009, unaware of this action, proposed the larger and more complete SII (MB.R.2181) as the lectotype. It includes, among other bones, several dorsal vertebrae, the left scapula, both coracoids, the , both humeri, both ulnae and radii (lower arm bones), a right hand, a partial left hand, both and the right femur, tibia and fibula (shank bones). Later in 2011, Taylor realized that Janensch had designated the smaller skeleton SI as the lectotype in 1935.
In 1988 Gregory S. Paul published a new reconstruction of the skeleton of B. brancai, highlighting differences in proportion between it and B. altithorax. Chief among them was a distinction in the way the trunk vertebrae vary: they are fairly uniform in length in the African material, but vary widely in B. altithorax. Paul believed that the limb and girdle elements of both species were very similar, and therefore suggested they be separated not at genus, but only at subgenus level, as Brachiosaurus (Brachiosaurus) altithorax and Brachiosaurus (Giraffatitan) brancai. Giraffatitan was raised to full genus level by George Olshevsky in 1991, while referring to the vertebral variation. Between 1991 and 2009, the name Giraffatitan was almost completely disregarded by other researchers.
A detailed 2009 study by Taylor of all material, including the limb and girdle bones, found that there are significant divergences between B. altithorax and the Tendaguru material in all elements known from both species. Taylor found twenty-six distinct osteological (bone-based) characters, a larger difference than between Diplodocus and Barosaurus, and therefore argued that the African material should indeed be placed in its own genus ( Giraffatitan) as Giraffatitan brancai. An important contrast between the two genera is their overall body shape, with Brachiosaurus having a 23 percent longer dorsal vertebral series and a 20 to 25 percent longer and also taller tail. The split was rejected by Daniel Chure in 2010, but from 2012 onward most studies recognized the name Giraffatitan.
The type material moved to Paris consisted of a sacrum, weathered out at the desert surface, and some of the left metacarpals and . Found at the discovery site but not collected, were partial bones of the left forearm, wrist bones, a right shin bone, and fragments that may have come from .
B. nougaredi was in 2004 considered to represent a distinct, unnamed brachiosaurid genus, but a 2013 analysis by Philip D. Mannion and colleagues found that the remains possibly belong to more than one species, as they were collected far apart. The metacarpals were concluded to belong to some indeterminate titanosauriform. The sacrum was reported lost in 2013. It was not analyzed and provisionally considered to represent an indeterminate sauropod, until such time that it could be relocated in the collections of the Muséum national d'histoire naturelle. Only four out of the five sacral are preserved. The total original length was in 1960 estimated at , compared to with B. altithorax. This would make it larger than any other sauropod sacrum ever found, except those of Argentinosaurus and Apatosaurus.
While the limb bones of the most complete Giraffatitan skeleton (MB.R.2181) were very similar in size to those of the Brachiosaurus type specimen, the former was somewhat lighter than the Brachiosaurus specimen given its proportional differences. In studies including estimates for both genera, Giraffatitan was estimated at , , , , and . As with the main Brachiosaurus specimen, Giraffatitan specimen MB.R.2181 likely does not reflect the maximum size of the genus, as a fibula (specimen HMXV2) is thirteen percent longer than that of MB.R.2181.
Brachiosaurus and Giraffatitan probably had a small shoulder hump between the third and fifth dorsal (back) vertebra, where the sideward- and upward-directed vertebral processes were longer, providing additional surface for neck muscle attachment. The ribcage was deep compared to other sauropods. Though the humerus (upper arm bone) and femur (thigh bone) were roughly equal in length, the entire forelimb would have been longer than the hindlimb, as can be inferred from the elongated forearm and metacarpus of other brachiosaurids. This resulted in an inclined trunk with the shoulder much higher than the hips, and the neck exiting the trunk at a steep angle. The overall build of Brachiosaurus resembles a giraffe more than any other living animal. In contrast, most other sauropods had a shorter forelimb than hindlimb; the forelimb is especially short in contemporaneous Diplodocoidea.
Brachiosaurus differed in its body proportions from the closely related Giraffatitan. The trunk was about 25 to 30 percent longer, resulting in a dorsal vertebral column longer than the humerus. Only a single complete Caudal vertebra (tail) vertebra has been discovered, but its great height suggests that the tail was larger than in Giraffatitan. This vertebra had a much greater area for ligament attachment due to a broadened neural spine, indicating that the tail was also longer than in Giraffatitan, possibly by 20 to 25 percent. In 1988, paleontologist Gregory S. Paul suggested that the neck of Brachiosaurus was shorter than that of Giraffatitan, but in 2009, paleontologist Mike P. Taylor pointed out that two cervical vertebrae likely belonging to Brachiosaurus had identical proportions. Unlike Giraffatitan and other sauropods, which had vertically oriented forelimbs, the arms of Brachiosaurus appear to have been slightly sprawled at the shoulder joints, as indicated by the sideward orientation of the joint surfaces of the coracoids. The humerus was less slender than that of Giraffatitan, while the femur had similar proportions. This might indicate that the forelimbs of Brachiosaurus supported a greater fraction of the body weight than is the case for Giraffatitan.
In Brachiosaurus, this widening occurred gradually, resulting in a paddle-like shape, while in Giraffatitan the widening occurred abruptly and only in the uppermost portion. At both their front and back sides, the neural spines featured large, triangular and rugose surfaces, which in Giraffatitan were semicircular and much smaller. The various vertebral processes were connected by thin sheets or ridges of bone, which are called laminae. Brachiosaurus lacked postspinal laminae, which were present in Giraffatitan, running down the back side of the neural spines. The spinodiapophyseal laminae, which stretched from the neural spines to the diapophyses, were conflated with the spinopostzygapophyseal laminae, which stretched between the neural spines and the articular processes at the back of the vertebrae, and therefore terminated at mid-height of the neural spines. In Giraffatitan, both laminae were not conflated, and the spinodiapophyseal laminae reached up to the top of the neural spines. Brachiosaurus is further distinguished from Giraffatitan in lacking three details in the laminae of the dorsal vertebrae that are unique to the latter genus.
Air sacs not only invaded the vertebrae but also the ribs. In Brachiosaurus, the air sacs invaded through a small opening on the front side of the rib shafts, while in Giraffatitan openings were present on both the front and back sides of the tuberculum, a bony projection articulating with the diapophyses of the vertebrae. Paul, in 1988, stated that the ribs of Brachiosaurus were longer than in Giraffatitan, which was questioned by Taylor in 2009. Behind the dorsal vertebral column, the sacrum consisted of five co-ossified . As in Giraffatitan, the sacrum was proportionally broad and featured very short neural spines. Poor preservation of the sacral material in Giraffatitan precludes detailed comparisons between both genera. Of the tail, only the second caudal vertebra is well preserved.
As in Giraffatitan, this vertebra was slightly amphicoelous (concave on both ends), lacked openings on the sides, and had a short neural spine that was rectangular and tilted backward. In contrast to the second caudal vertebra of Giraffatitan, that of Brachiosaurus had a proportionally taller neural arch, making the vertebra about thirty percent taller. The centrum lacked depressions on its sides, in contrast to Giraffatitan. In front or back view, the neural spine broadened toward its tip to approximately three times its minimum width, but no broadening is apparent in Giraffatitan. The neural spines were also inclined backward by about 30 degrees, more than in Giraffatitan (20 degrees). The caudal ribs projected laterally and were not tilted backward as in Giraffatitan. The articular facets of the articular processes at the back of the vertebra were directed downward, while those of Giraffatitan faced more toward the sides. Besides the articular processes, the hyposphene-hypantrum articulation formed an additional articulation between vertebrae, making the vertebral column more rigid; in Brachiosaurus, the hyposphene was much more pronounced than in Giraffatitan.
The coracoid was semicircular and taller than broad. Differences from Giraffatitan are related to its shape in side view, including the straighter suture with the scapula. Moreover, the articular surface that forms part of the shoulder joint was thicker and directed more sideward than in Giraffatitan and other sauropods, possibly indicating a more sprawled forelimb. The humerus, as preserved, measures in length, though part of its lower end was lost to erosion; its original length is estimated at . This bone was more slender in Brachiosaurus than in most other sauropods, measuring only in width at its narrowest part. It was, however, more robust than that of Giraffatitan, being about ten percent broader at the upper and lower ends. At its upper end, it featured a low bulge visible in side view, which is absent in Giraffatitan.
Distinguishing features can also be found in the ilium of the pelvis. In Brachiosaurus, the ischiadic peduncle, a downward projecting extension connecting to the ischium, reaches farther downward than in Giraffatitan. While the latter genus had a sharp notch between the ischiadic peduncle and the back portion of the ilium, this notch is more rounded in Brachiosaurus. On the upper surface of the hind part of the ilium, Brachiosaurus had a pronounced tubercle that is absent in other sauropods. Of the hindlimb, the femur was very similar to that of Giraffatitan although slightly more robust, and measured long. As in Giraffatitan, it was strongly elliptical in cross section, being more than twice as wide in front or back view than in side view. The fourth trochanter, a prominent bulge on the back side of the femoral shaft, was more prominent and located further downward. This bulge served as anchor point for the most important locomotory muscle, the caudofemoralis, which was situated in the tail and pulled the upper thigh backward when contracted. At the lower end of the femur, the pair of condyles did not extend backward as strongly as in Giraffatitan; the two condyles were similar in width in Brachiosaurus but unequal in Giraffatitan.
The dorsal and lateral temporal fenestrae (openings at the upper rear and sides of the skull) were large, perhaps due to the force imparted there by the massive jaw adductor musculature. The frontal bones on top of the skull were short and wide (similar to Giraffatitan), fused and connected by a suture to the parietal bones, which were also fused together. The surface of the parietals between the dorsal fenestrae was wider than that of Giraffatitan, but narrower than that of Camarasaurus. The skull differed from that of Giraffatitan in its U-shaped (instead of W-shaped) suture between frontal and nasal bones, a shape which appears more pronounced by the frontal bones extending forward over the orbits (eye sockets). Similar to Giraffatitan, the neck of the occipital condyle was very long.
The premaxilla appears to have been longer than that of Camarasaurus, sloping more gradually toward the nasal bar, which created the very long snout. Brachiosaurus had a long and deep maxilla (the main bone of the upper jaw), which was thick along the margin where the Dental alveolus (tooth sockets) were placed, thinning upward. The interdental plates of the maxilla were thin, fused, porous, and triangular. There were triangular Nutrient artery between the plates, each containing the tip of an Tooth eruption. The narial fossa (depression) in front of the bony nostril was long, relatively shallow, and less developed than that of Giraffatitan. It contained a subnarial fenestra, which was much larger than those of Giraffatitan and Camarasaurus. The dentaries (the bones of the lower jaws that contained the teeth) were robust, though less than in Camarasaurus. The upper margin of the dentary was arched in profile, but not as much as in Camarasaurus. The interdental plates of the dentary were somewhat oval, with diamond shaped openings between them. The dentary had a Meckelian groove that was open until below the ninth alveolus, continuing thereafter as a shallow trough.
Each maxilla had space for fourteen or fifteen teeth, whereas Giraffatitan had eleven and Camarasaurus eight to ten. The maxillae contained replacement teeth that had rugose Tooth enamel, similar to Camarasaurus, but lacked the small denticles (serrations) along the edges. Since the maxilla was wider than that of Camarasaurus, Brachiosaurus would have had larger teeth. The replacement teeth in the premaxilla had crinkled enamel, and the most complete of these teeth did not have denticles. It was somewhat spatulate (spoon-shaped), and had a longitudinal ridge. Each dentary had space for about fourteen teeth. The maxillary tooth rows of Brachiosaurus and Giraffatitan ended well in front of the antorbital fenestra (the opening in front of the orbit), whereas they ended just in front of and below the fenestra in Camarasaurus and Shunosaurus. The teeth of Brachiosaurus exhibited a high degree of dental complexity relative to other sauropods.
When describing Brachiosaurus brancai and B. fraasi in 1914, Janensch observed that the unique elongation of the humerus was shared by all three Brachiosaurus species as well as the British Pelorosaurus. He also noted this feature in Cetiosaurus, where it was not as strongly pronounced as in Brachiosaurus and Pelorosaurus. Janensch concluded that the four genera must have been closely related to each other, and in 1929 assigned them to a subfamily Brachiosaurinae within the family Bothrosauropodidae.
During the twentieth century, several sauropods were assigned to Brachiosauridae, including Astrodon, Bothriospondylus, Pelorosaurus, Pleurocoelus, and Ultrasauros.
Many cladistic analyses have since suggested that at least some genera can be assigned to the Brachiosauridae, and that this group is a basal branch within the Titanosauriformes. The exact status of each potential brachiosaurid varies from study to study. For example, a 2010 study by Chure and colleagues recognized Abydosaurus as a brachiosaurid together with Brachiosaurus, which in this study included B. brancai. In 2009, Taylor noted multiple anatomical differences between the two Brachiosaurus species, and consequently moved B. brancai into its own genus, Giraffatitan. In contrast to earlier studies, Taylor treated both genera as distinct units in a cladistic analysis, finding them to be . Another 2010 analysis focusing on possible Asian brachiosaurid material found a clade including Abydosaurus, Brachiosaurus, Cedarosaurus, Giraffatitan, and Paluxysaurus, but not Qiaowanlong, the putative Asian brachiosaurid. Several subsequent analyses have found Brachiosaurus and Giraffatitan not to be sister groups, but instead located at different positions on the evolutionary tree. A 2012 study by D'Emic placed Giraffatitan in a more basal position, in an earlier branch, than Brachiosaurus, while a 2013 study by Philip Mannion and colleagues had it the other way around.
This cladogram follows that published by Michael D. D'Emic in 2012:
Cladistic analyses also allow scientists to determine which new traits the members of a group have in common, their synapomorphies. According to the 2009 study by Taylor, B. altithorax shares with other brachiosaurids the classic trait of having an upper arm bone that is at least nearly as long as the femur (ratio of humerus length to femur length of at least 0.9). Another shared character is the very flattened femur shaft, its transverse width being at least 1.85 times the width measured from front to rear.
With their heads held high above the heart, brachiosaurids would have had stressed cardiovascular systems. It is estimated that the heart of Brachiosaurus would have to pump double the blood pressure of a giraffe to reach the brain, and possibly weighed .
As Brachiosaurus shared its habitat, the Morrison, with many other sauropod species, its specialization for feeding at greater heights would have been part of a system of niche partitioning, the various taxa thus avoiding direct competition with each other. A typical food tree might have resembled Sequoiadendron. The fact that such tall conifers were relatively rare in the Morrison might explain why Brachiosaurus was much less common in its ecosystem than the related Giraffatitan, which seems to have been one of the most abundant sauropods in the Tendaguru. Brachiosaurus, with its shorter arms and lower shoulders, was not as well-adapted to high-browsing as Giraffatitan.
It has been suggested that Brachiosaurus could rear on its hind legs to feed, using its tail for extra ground support. A detailed physical modelling-based analysis of sauropod rearing capabilities by Heinrich Mallison showed that while many sauropods could rear, the unusual body shape and limb length ratio of brachiosaurids made them exceptionally ill-suited for rearing. The forward position of its center of mass would have led to problems with stability, and required unreasonably large forces in the hips to obtain an upright posture. Brachiosaurus would also have gained only 33 percent more feeding height, compared to other sauropods, for which rearing may have tripled the feeding height.Mallison, H. (2011). "Rearing Giantskinetic-dynamic modeling of sauropod bipedal and tripodal poses". In Klein, N., Remes, K., Gee, C. & Sander M. (eds): Biology of the Sauropod Dinosaurs: Understanding the life of giants. Life of the Past (series ed. Farlow, J.). Bloomington, IN: Indiana University Press. A bipedal stance might have been adopted by Brachiosaurus in exceptional situations, like male dominance fights.
The downward mobility of the neck of Brachiosaurus would have allowed it to reach open water at the level of its feet, while standing upright. Modern giraffes spread their forelimbs to lower the mouth in a relatively horizontal position, to more easily gulp down the water. It is unlikely that Brachiosaurus could have attained a stable posture this way, forcing the animal to plunge the snout almost vertically into the surface of a lake or stream. This would have submerged its fleshy nostrils if they were located at the tip of the snout as Witmer hypothesized. Hallett and Wedel therefore in 2016 rejected his interpretation and suggested that they were in fact placed at the top of the head, above the bony nostrils, as traditionally thought. The nostrils might have evolved their retracted position to allow the animal to breathe while drinking.
Czerkas speculated on the function of the peculiar brachiosaurid nose, and pointed out that there was no conclusive way to determine where the nostrils where located, unless a head with skin impressions was found. He suggested that the expanded nasal opening would have made room for tissue related to the animal's ability to smell, which would have helped smell proper vegetation. He also noted that in modern reptiles, the presence of bulbous, enlarged, and uplifted nasal bones can be correlated with fleshy horns and knobby protuberances, and that Brachiosaurus and other sauropods with large noses could have had ornamental nasal crests.
It has been proposed that sauropods, including Brachiosaurus, may have had (trunks) based on the position of the bony narial orifice, to increase their upward reach. Fabien Knoll and colleagues disputed this for Diplodocus and Camarasaurus in 2006, finding that the opening for the facial nerve in the braincase was small. The facial nerve was thus not enlarged as in elephants, where it is involved in operating the sophisticated musculature of the proboscis. However, Knoll and colleagues also noted that the facial nerve for Giraffatitan was larger, and could therefore not discard the possibility of a proboscis in this genus.
In sauropods, the air sacs did not simply function as an aid for respiration; by means of air channels they were connected to much of the skeleton. These branches, the diverticula, via pneumatic openings invaded many bones and strongly hollowed them out. It is not entirely clear what the evolutionary benefit of this phenomenon was but in any case it considerably lightened the skeleton. They might also have removed excess heat to aid thermoregulation.
In 2016, Mark Hallett and Mathew Wedel for the first time reconstructed the entire air sac system of a sauropod, using B. altithorax as an example of how such a structure might have been formed. In their reconstruction a large abdominal air sac was located between the pelvis and the outer lung side. As with birds, three smaller sacs assisted the pumping process from the underside of the breast cavity: at the rear the posterior thoracic air sac, in the middle the anterior thoracic air sac and in front the clavicular air sac, in that order gradually diminishing in size. The cervical air sac was positioned under the shoulder blade, on top of the front lung. The air sacs were via tubes connected with the vertebrae. Diverticula filled the various fossae and pleurocoels that formed depressions in the vertebral bone walls. These were again connected with inflexible air cells inside the bones.
Such ontogenetic changes are especially to be expected in the proportions of an organism. The middle neck vertebrae of SMA 0009 are remarkably short for a sauropod, being just 1.8 times longer than high, compared with a ratio of 4.5 in Giraffatitan. This suggests that the necks of brachiosaurids became proportionally much longer while their backs, to the contrary, experienced relative negative growth. The humerus of SMA 0009 is relatively robust: it is more slender than that of most basal titanosauriforms but thicker than the upper arm bone of B. altithorax. This suggests that it was already lengthening in an early juvenile stage and became even more slender during growth. This is in contrast to diplodocoids and basal macronarians, whose slender humeri are not due to such allometric growth. Brachiosaurus also appears to have experienced an elongation of the metacarpals, which in juveniles were shorter compared to the length of the radius; SMA 0009 had a ratio of just 0.33, the lowest known in the entire Neosauropoda.
Another plausible ontogenetic change is the increased pneumatization of the vertebrae. During growth, the diverticula of the air sacs invaded the bones and hollowed them out. SMA 0009 already has pleurocoels, pneumatic excavations, at the sides of its neck vertebrae. These are divided by a ridge but are otherwise still very simple in structure, compared with the extremely complex ridge systems typically shown by adult derived sauropods. Its dorsal vertebrae still completely lack these.
Two traits are not so obviously linked to ontogeny. The neural spines of the rear dorsal vertebrae and the front sacral vertebrae are extremely compressed transversely, being eight times longer from front to rear than wide from side to side. The spinodiapophyseal lamina or "SPOL", the ridge normally running from each side of the neural spine toward each diapophysis, the transverse process bearing the contact facet for the upper rib head, is totally lacking. Both traits could be autapomorphies, unique derived characters proving that SMA 0009 represents a distinct species, but there are indications that these traits are growth-related as well. Of the basal sauropod Tazoudasaurus a young juvenile is known that also lacks the spinodiapophyseal lamina, whereas the adult form has an incipient ridge. Furthermore, a very young juvenile of Europasaurus had a weak SPOL but it is well developed in mature individuals. These two cases represent the only finds in which the condition can be checked; they suggest that the SPOL developed during growth. As this very ridge widens the neural spine, its transverse compression is not an independent trait and the development of the SPOL plausibly precedes the thickening of the neural spine with more mature animals.
Sauropods were likely able to sexually reproduce before they attained their maximum individual size. The maturation rate differed between species. Its bone structure indicates that Brachiosaurus was able to reproduce when it reached forty percent of its maximal size. In 2005, Jack Horner estimated that Brachiosaurus reached adulthood in less than 20 years.
Other dinosaurs known from the Morrison Formation include the predatory theropods Koparion, Stokesosaurus, Ornitholestes, Ceratosaurus, Allosaurus and Torvosaurus, as well as the herbivorous Camptosaurus, Dryosaurus, Othnielia, Gargoyleosaurus and Stegosaurus. Allosaurus accounted for 70 to 75 percent of theropod specimens and was at the top trophic level of the Morrison Food chain. Ceratosaurus might have specialized in attacking large sauropods, including smaller individuals of Brachiosaurus. Other vertebrates that shared this paleoenvironment included ray-finned fish, , , like Dorsetochelys, Sphenodontia, , terrestrial and aquatic crocodylomorphs such as Hoplosuchus, and several species of pterosaur like Harpactognathus and Mesadactylus. Shells of and aquatic are also common. The flora of the period has been revealed by fossils of Chlorophyta, fungi, , horsetails, , , and several families of . Vegetation varied from river-lining forests in otherwise treeless settings () with , and , to fern with occasional trees such as the Araucaria-like conifer Brachyphyllum.
Brachiosaurus has been called one of the most iconic dinosaurs, but most popular depictions are based on the African species B. brancai which has since been moved to its own genus, Giraffatitan. A Asteroid belt asteroid, , was named 9954 Brachiosaurus in honor of the genus in 1991. Brachiosaurus was featured in the 1993 movie Jurassic Park, as the first computer generated dinosaur shown. These effects were considered ground-breaking at the time, and the awe of the movie's characters upon seeing the dinosaur for the first time was mirrored by audiences. The movements of the movie's Brachiosaurus were based on the gait of a giraffe combined with the mass of an elephant. A scene later in the movie used an animatronic head and neck, for when a Brachiosaurus interacts with human characters.
Assigned material
Formerly assigned species
Brachiosaurus brancai and Brachiosaurus fraasi
Brachiosaurus atalaiensis
Brachiosaurus nougaredi
Description
Size
General build
Postcranial skeleton
Skull
Classification
Paleobiology
Habits
Neck posture
Feeding and diet
Nostril function
Metabolism
Air sacs
Growth
Paleoecology
Cultural significance
Bibliography
External links
|
|