Polychlorinated biphenyls ( PCBs) are organochlorine compounds with the formula Carbon12Hydrogen10− xChloride x; they were once widely used in the manufacture of carbonless copy paper, as heat transfer fluids, and as dielectric and coolant fluids for electrical equipment. They are highly toxic and chemical compounds, formerly used in industrial and consumer electronic products, whose production was banned internationally by the Stockholm Convention on Persistent Organic Pollutants in 2001.
Because of their longevity, PCBs are still widely in use, even though their manufacture has declined drastically since the 1960s, when a multitude of problems were identified.
The International Agency for Research on Cancer (IARC) rendered PCBs as definite carcinogens in humans. According to the U.S. Environmental Protection Agency (EPA), PCBs cause cancer in animals and are probable human carcinogens. Moreover, because of their use as a coolant in electric transformers, PCBs still persist in built environments.
Some PCBs share a structural similarity and toxic mode of action with dioxins. Other toxic effects such as endocrine disruption (notably blocking of thyroid system functioning) and neurotoxicity are known. The bromine analogues of PCBs are polybrominated biphenyls (PBBs), which have analogous applications and environmental concerns.
An estimated 1.2 million tons have been produced globally.
The density varies from 1.182 to 1.566 g/cm3. Other physical and chemical properties vary widely across the class. As the degree of chlorination increases, melting point and lipophilicity increase, and vapour pressure and water solubility decrease.
PCBs do not easily break down or degrade, which made them attractive for industries. PCB mixtures are resistant to acids, bases, oxidation, hydrolysis, and temperature change. They can generate extremely toxic dibenzodioxins and through partial oxidation. Intentional degradation as a treatment of unwanted PCBs generally requires high heat or catalysis (see Methods of destruction below).
PCBs readily penetrate skin, PVC (polyvinyl chloride), and latex (natural rubber).
Toxic effects vary depending on the specific PCB. In terms of their structure and toxicity, PCBs fall into two distinct categories, referred to as coplanar or non- ortho-substituted arene substitution patterns and noncoplanar or ortho-substituted congeners.
Di- ortho-substituted, non-coplanar PCBs interfere with intracellular signal transduction dependent on calcium which may lead to neurotoxicity. ortho-PCBs can disrupt thyroid hormone transport by binding to transthyretin.
Brazil
Czech Republic and Slovakia
France
Germany
Italy
Japan
Former USSR
United Kingdom
United States
The exception to the naming system is Aroclor 1016 which was produced by distilling 1242 to remove the highly chlorinated congeners to make a more biodegradable product. "1016" was given to this product during Monsanto's research stage for tracking purposes but the name stuck after it was commercialized.
Different Aroclors were used at different times and for different applications. In electrical equipment manufacturing in the US, Aroclor 1260 and Aroclor 1254 were the main mixtures used before 1950; Aroclor 1242 was the main mixture used in the 1950s and 1960s until it was phased out in 1971 and replaced by Aroclor 1016.
Although deliberate production of PCBs is banned by international treaty, significant amounts of PCBs are still being "inadvertently" produced. Research suggests that 45,000 tons of 'by-product' PCBs are legally produced per year in the US as part of certain chemical and product formulations.
Commercial production of PCBs was banned in the United States in 1979, with the passage of the Toxic Substances Control Act (TSCA).
Use of PCBs is commonly divided into closed and open applications. Examples of closed applications include and insulating fluids (transformer oil) for and , such as those used in old fluorescent light ballasts, and considered a semi-closed application. In contrast, the major open application of PCBs was in carbonless copy ("NCR") paper, which even presently results in paper contamination.
Other open applications were lubricating and cutting oils, and as in paints and cements, stabilizing additives in flexible PVC coatings of electrical cables and electronic components, pesticide extenders, reactive and for , , wood floor finishes, such as Fabulon and other products of Halowax in the U.S., de-dusting agents, waterproofing compounds, casting agents. It was also used as a plasticizer in paints and especially "coal tars" that were used widely to coat water tanks, bridges and other infrastructure pieces.
Modern sources include , which may be used in for paper or plastic products. PCBs are also still found in old equipment like capacitors, ballasts, X-ray machine, and other e-waste.
As the pressure of ocean water increases with depth, PCBs become heavier than water and sink to the deepest ocean trenches where they are concentrated.
In the atmosphere, PCBs may be degraded by , or directly by photolysis of carbon–chlorine bonds (even if this is a less important process).
Atmospheric concentrations of PCBs tend to be lowest in rural areas, where they are typically in the picogram per cubic meter range, higher in suburban and urban areas, and highest in city centres, where they can reach 1 nanogram/m3 or more. In Milwaukee, an atmospheric concentration of 1.9 ng/m3 has been measured, and this source alone was estimated to account for 120 kg/year of PCBs entering Lake Michigan. In 2008, concentrations as high as 35 nanogram/m3, 10 times higher than the EPA guideline limit of 3.4 ng/m3, have been documented inside some houses in the U.S.
Volatilization of PCBs in soil was thought to be the primary source of PCBs in the atmosphere, but research suggests ventilation of PCB-contaminated indoor air from buildings is the primary source of PCB contamination in the atmosphere.
In bacteria, PCBs may be dechlorinated through reductive dechlorination, or oxidized by dioxygenase enzyme. In eukaryotes, PCBs may be oxidized by the cytochrome P450 enzyme. Like many lipophilic toxins, PCBs undergo biomagnification and bioaccumulation primarily due to the fact that they are easily retained within organisms.
Plastic pollution, specifically microplastics, are a major contributor of PCBs into the biosphere and especially into marine environments. PCBs concentrate in marine environments because freshwater systems, like rivers, act as a bridge for plastic pollution to be transported from terrestrial environments into marine environments. It has been estimated that 88–95% of marine plastic is exported into the ocean by just 10 major rivers.
An organism can accumulate PCBs by consuming other organisms that have previously ingested PCBs from terrestrial, freshwater, or marine environments. The concentration of PCBs within an organism will increase over their lifetime; this process is called bioaccumulation. PCB concentrations within an organism also change depending upon which trophic level they occupy. When an organism occupies a high trophic level, like orcas or , they will accumulate more PCBs than an organism that occupies a low trophic level, like phytoplankton. If enough organisms with a trophic level are killed due to the accumulation of toxins, like PCB, a trophic cascade can occur.
PCBs can cause harm to human health or even death when eaten. PCBs can be transported by birds from aquatic sources onto land via feces and carcasses.
Workers recycling old equipment in the electronics recycling industry can also be exposed to PCBs.
There is evidence that crash dieters that have been exposed to PCBs have an elevated risk of health complications. Stored PCBs in the adipose tissue become mobilized into the blood when individuals begin to crash diet.
PCBs have shown toxic and effects by interfering with in the body. PCBs, depending on the specific congener, have been shown to both inhibit and imitate estradiol, the main sex hormone in females. Imitation of the estrogen compound can feed estrogen-dependent breast cancer cells, and possibly cause other cancers, such as uterine cancer or cervical cancer. Inhibition of estradiol can lead to serious developmental problems for both males and females, including sexual, skeletal, and mental development issues. In a cross-sectional study, PCBs were found to be negatively associated with testosterone levels in adolescent boys.
High PCB levels in adults have been shown to result in reduced levels of the thyroid hormone triiodothyronine, which affects almost every physiological process in the body, including growth and development, metabolism, body temperature, and heart rate. It also resulted in reduced immunity and increased thyroid disorders.
In 2013, the IARC determined that the evidence for PCBs causing non-Hodgkin lymphoma is "limited" and "not consistent". In contrast an association between elevated blood levels of PCBs and non-Hodgkin lymphoma had been previously accepted. PCBs may play a role in the development of cancers of the immune system because some tests of laboratory animals subjected to very high doses of PCBs have shown effects on the animals' immune system, and some studies of human populations have reported an association between environmental levels of PCBs and immune response.
In 2003, Monsanto and Solutia Inc., a Monsanto corporate spin-off, reached a $700 million settlement with the residents of West Anniston, Alabama, who had been affected by the manufacturing and dumping of PCBs. In a trial lasting six weeks, the jury found that "Monsanto had engaged in outrageous behavior, and held the corporations and its corporate successors liable on all six counts it considered – including negligence, nuisance, wantonness and suppression of the truth."
In 2014, the Los Angeles Superior Court found that Monsanto was not liable for cancers claimed to be from PCBs permeating the food supply of three plaintiffs who had developed non-Hodgkin's lymphoma. After a four-week trial, the jury found that Monsanto's production and sale of PCBs between 1935 and 1977 were not substantial causes of the cancer.
In 2015, the cities of Spokane, San Diego, and San Jose initiated lawsuits against Monsanto to recover cleanup costs for PCB contaminated sites, alleging that Monsanto continued to sell PCBs without adequate warnings after they knew of their toxicity. Monsanto issued a media statement concerning the San Diego case, claiming that improper use or disposal by third-parties, of a lawfully sold product, was not the company's responsibility.
In July 2015, a St Louis county court in Missouri found that Monsanto, Solutia, Pharmacia and Pfizer were not liable for a series of deaths and injuries caused by PCBs manufactured by Monsanto Chemical Company until 1977. The trial took nearly a month and the jury took a day of deliberations to return a verdict against the plaintiffs from throughout the USA. Similar cases are ongoing. "The evidence simply doesn't support the assertion that the historic use of PCB products was the cause of the plaintiffs' harms. We are confident that the jury will conclude, as two other juries have found in similar cases, that the former Monsanto Company is not responsible for the alleged injuries," a Monsanto statement said.
In May 2016, a Missouri state jury ordered Monsanto to pay $46.5 million to three plaintiffs whose exposure to PCB caused non-Hodgkin lymphoma.
In December 2016, the state of Washington filed suit in King County. The state sought damages and clean up costs related to PCBs. In March 2018 Ohio Attorney General Mike DeWine also filed a lawsuit against Monsanto over health issues posed by PCBs.
On November 21, 2019, a federal judge denied a bid by Monsanto to dismiss a lawsuit filed by LA County calling the company to clean up cancer-causing PCBs from Los Angeles County waterways and storm sewer pipelines. The lawsuit calls for Monsanto to pay for cleanup of PCBs from dozens of waterways, including the LA River, San Gabriel River and the Dominguez Watershed.
In June 2020, Bayer agreed to pay $650 million to settle local lawsuits related to Monsanto's pollution of public waters in various areas of the United States with PCBs.
In 2023, over 90 Vermont school districts joined a lawsuit against Monsanto alleging that PCBs created by the company were used in the construction of their schools. The Vermont Attorney General's office also filed its own lawsuit against Monsanto related to the use of its PCBs.
In 1935, Monsanto Company (later Solutia Inc) took over commercial production of PCBs from Swann Chemical Company which had begun in 1929. PCBs, originally termed "chlorinated diphenyls", were commercially produced as mixtures of at different degrees of chlorination. The electric industry used PCBs as a non-flammable replacement for mineral oil to cool and insulate industrial transformers and capacitors. PCBs were also commonly used as heat stabilizer in cables and electronic components to enhance the heat and Fireproofing of PVC.
In the 1930s, the toxicity associated with PCBs and other chlorinated hydrocarbons, including polychlorinated naphthalenes, was recognized because of a variety of industrial incidents. Between 1936 and 1937, there were several medical cases and papers released on the possible link between PCBs and its detrimental health effects. In 1936, a U.S. Public health Service official described the wife and child of a worker from the Monsanto Industrial Chemical Company who exhibited and on their skin. The official attributed these symptoms to contact with the worker's clothing after he returned from work. In 1937, a conference about the hazards was organized at Harvard School of Public Health, and a number of publications referring to the toxicity of various chlorinated hydrocarbons were published before 1940.
In 1947, Robert Brown reminded chemists that Arochlors were "objectionably toxic": "Thus the maximum permissible concentration for an 8-hr. day is 1 mg. per cu.m. of air. They also produce a serious and disfiguring dermatitis".
In 1954, Kanegafuchi Chemical Co. Ltd. (Kaneka Corporation) first produced PCBs, and continued until 1972.
Through the 1960s Monsanto Chemical Company knew increasingly more about PCBs' harmful effects on humans and the environment, per internal leaked documents released in 2002, yet PCB manufacture and use continued with few restraints until the 1970s.
In 1966, PCBs were determined by Swedish chemist Sören Jensen to be an environmental contaminant. Jensen, according to a 1994 article in Sierra, named chemicals PCBs, which previously, had simply been called "phenols" or referred to by various trade names, such as Aroclor, Kanechlor, Pyrenol, Chlorinol and others. In 1972, PCB production plants existed in Austria, West Germany, France, the UK, Italy, Japan, Spain, the USSR and the US.
In the early 1970s, Ward B. Stone of the New York State Department of Environmental Conservation (NYSDEC) first published his findings that PCBs were leaking from transformers and had contaminated the soil at the bottom of utility poles.
There have been allegations that Industrial Bio-Test Laboratories engaged in data falsification in testing relating to PCBs.
Existing products containing PCBs which are "totally enclosed uses" such as insulating fluids in transformers and capacitors, vacuum pump fluids, and hydraulic fluid, are allowed to remain in use in the US. The public, legal, and scientific concerns about PCBs arose from research indicating they are likely having the potential to adversely impact the environment and, therefore, undesirable as commercial products. Despite active research spanning five decades, extensive regulatory actions, and an effective ban on their production since the 1970s, PCBs still persist in the environment and remain a focus of attention.
The values reported by the local health authority (ASL) of Brescia since 1999 are 5,000 times above the limits set by Ministerial Decree 471/1999 (levels for residential areas, 0.001 mg/kg). As a result of this and other investigations, in June 2001, a complaint of an environmental disaster was presented to the Public Prosecutor's Office of Brescia. Research on the adult population of Brescia showed that residents of some urban areas, former workers of the plant, and consumers of contaminated food, have PCB levels in their bodies that are in many cases 10–20 times higher than reference values in comparable general populations. PCBs entered the human food supply by animals grazing on contaminated pastures near the factory, especially in local veal mostly eaten by farmers' families. The exposed population showed an elevated risk of Non-Hodgkin lymphoma, but not for other specific cancers.
In Okinawa, high levels of PCB contamination in soil on Kadena Air Base were reported in 1987 at thousands of parts per million, some of the highest levels found in any pollution site in the world.
Brendan Smith, the Minister for Agriculture, Fisheries and Food, stated the pork contamination was caused by PCB-contaminated feed that was used on 9 of Ireland's 400 pig farms, and only one feed supplier was involved. Smith added that 38 beef farms also used the same contaminated feed, but those farms were quickly isolated and no contaminated beef entered the food chain. While the contamination was limited to just 9 pig farms, the Irish government requested the immediate withdrawal and disposal of all pork-containing products produced in Ireland and purchased since September 1, 2008. This request for withdrawal of pork products was confirmed in a press release by the Food Safety Authority of Ireland on December 6.
It is thought that the incident resulted from the contamination of fuel oil used in a drying burner at a single feed processor, with PCBs. The resulting combustion produced a highly toxic mixture of PCBs, dioxins and , which was included in the feed produced and subsequently fed to a large number of pigs.
In 2007, the highest pollution levels remained concentrated in Snow and Choccolocco Creeks. Concentrations in fish have declined and continue to decline over time; sediment disturbance, however, can resuspend the PCBs from the sediment back into the water column and food web.
In 1989, during construction near the Zilwaukee bridge, workers uncovered an uncharted landfill containing PCB-contaminated waste which cost $100,000 to clean up.
Much of the Great Lakes area were still heavily polluted with PCBs in 1988, despite extensive remediation work.
Over 1,000 tons of PCBs were estimated to have been dumped in Monroe and Owen counties. Although federal and state authorities have been working on the sites' environmental remediation, many areas remain contaminated. Concerns have been raised regarding the removal of PCBs from the karst limestone topography, and regarding the possible disposal options. To date, the Westinghouse Bloomington PCB Superfund site case does not have a Remedial Investigation/Feasibility Study (RI/FS) and Record of Decision (ROD), although Westinghouse signed a US Department of Justice Consent Decree in 1985. The 1985 consent decree required Westinghouse to construct an incinerator that would incinerate PCB-contaminated materials. Because of public opposition to the incinerator, however, the State of Indiana passed a number of laws that delayed and blocked its construction. The parties to the consent decree began to explore alternative remedies in 1994 for six of the main PCB contaminated sites in the consent decree. Hundreds of sites remain unaddressed as of 2014. Monroe County will never be PCB-free, as noted in a 2014 Indiana University program about the local contamination.
On February 15, 2008, Monroe County approved a plan to clean up the three remaining contaminated sites in the City of Bloomington, at a cost of $9.6 million to CBS Corporation, the successor of Westinghouse. In 1999, Viacom bought CBS, so they are current responsible party for the PCB sites.
New Bedford Harbor, which is a listed Superfund site, contained some of the highest sediment concentrations of PCBs in the marine environment. Cleanup of the area began in 1994 and is mostly complete as of 2020.
Investigations into historic waste dumping in the Bliss Corner neighborhood have revealed the existence of PCBs, among other hazardous materials, buried in soil and waste material.
After the plant closed the state environmental agency found PCB contamination in streams near the plant and in the city's sewage treatment sludge. A 100,000 square-foot warehouse and unknown amounts of contaminated soil and water around the site had to be cleaned up. Most of the surface debris, including close to 13 million pounds of contaminated equipment, carcasses and tanks of contaminated oil, had to be removed. Walter C. Carolan, owner of Rose Chemical, and five others pleaded guilty in 1989 to committing fraud or falsifying documents. Carolan and two other executives served sentences of less than 18 months; the others received fines and were placed on probation. Cleanup costs at the site are estimated at $35 million.
Love Canal is a neighborhood in Niagara Falls, New York, that was heavily contaminated with toxic waste including PCBs. Eighteen Mile Creek in Lockport, New York, is an EPA Superfund site for PCBs contamination.
PCB pollution at the State Office Building in Binghamton was responsible for what is now considered to be the first indoor environmental disaster in the United States. In 1981, a transformer explosion in the basement spewed PCBs throughout the entire 18-story building. The contamination was so severe that cleanup efforts kept the building closed for 13 years.
Under Governor Jim Hunt, Jr., state officials then erected large, yellow warning signs along the contaminated highways that read: "CAUTION: PCB Chemical Spills Along Highway Shoulders". The illegal dumping is believed to have been motivated by the passing of the Toxic Substances Control Act (TSCA), which became effective on August 2, 1978, and increased the expense of chemical waste disposal.
Within a couple of weeks of the crime, Robert Burns and his sons, Timothy and Randall, were arrested for dumping the PCBs along the roadsides. Burns was a business partner of Robert "Buck" Ward Jr., of the Ward PCB Transformer Company, in Raleigh. Burns and sons pleaded guilty to state and Federal criminal charges; Burns received a three to five-year prison sentence. Ward was acquitted of state charges in the dumping, but was sentenced to 18 months prison time for violation of TSCA.
Cleanup and disposal of the roadside PCBs generated controversy, as the Governor's plan to pick up the roadside PCBs and to bury them in a landfill in rural Warren County were strongly opposed in 1982 by local residents.
In October 2013, at the request of the South Carolina Department of Health and Environmental Control (SCDHEC), the City of Charlotte, North Carolina, decided to stop applying biosolids to land while authorities investigated the source of PCB contamination.
In February 2014, the City of Charlotte admitted PCBs have entered their sewage treatment centers as well.
After the 2013 SCDHEC had issued emergency regulations, the City of Charlotte discovered high levels of PCBs entering its sewage waste water treatment plants, where sewage is converted to sewage sludge. The city at first denied it had a problem, then admitted an "event" occurred in February 2014, and in April that the problem had occurred much earlier. The city stated that its very first test with a newly changed test method revealed very high PCB levels in its sewage sludge farm field fertilizer. Because of the widespread use of the contaminated sludge, SCDHEC subsequently issued PCB fish advisories for nearly all streams and rivers bordering farm fields that had been applied with city waste.
In Akron, Ohio, soil was contaminated and noxious PCB-laden fumes had been put into the air by an electrical transformer deconstruction operation from the 1930s to the 1960s.
In 2013, the state environmental regulators issued a rare emergency order, banning all sewage sludge from being land applied or deposited on landfills, as it contained very high levels of PCBs. The problem had not been discovered until thousands of acres of farm land in the state had been contaminated by the hazardous sludge. A criminal investigation to determine the perpetrator of this crime was launched.
PCBs entered the environment through paint, hydraulic fluids, sealants, inks and have been found in river sediment and wildlife. Spokane utilities will spend $300 million to prevent PCBs from entering the river in anticipation of a 2017 federal deadline to do so. In August 2015 Spokane joined other U.S. cities like San Diego and San Jose, California, and Westport, Massachusetts, in seeking damages from Monsanto.
EPA defined the "maximum contaminant level goal" for public water systems as zero, but because of the limitations of water treatment technologies, a level of 0.5 parts per billion is the actual regulated level (maximum contaminant level).
Thermal desorption is highly effective at removing PCBs from soil.
A potential cost effective, low risk remediation technique is bioremediation. Bioremediation involves the use of biota to remediate sediments. Phytoremediation, the use of plants to remediate soils, has been found to be effective for a broad range of contaminants such as mercury PCB and PAHs in terrestrial soils.
Biochemical metabolism
Overview
Species dependent
Temperature dependent
Sex dependent
Health effects
Exposure and excretion
Signs and symptoms
Humans
Animals
Cancer
Lawsuits related to health effects
History
Pollution due to PCBs
Belgium
Italy
Japan
Republic of Ireland
Kenya
Slovakia
Slovenia
Spain and Portugal
United Kingdom
United States
Alabama
California
Connecticut
Great Lakes
Indiana
Massachusetts
Missouri
Montana
New York
North Carolina
Ohio
South Carolina
Washington
Wisconsin
Pacific Ocean
Regulation
Japan
Sweden
United Kingdom
United States
Methods of destruction
Physical
Chemical
Microbial
Fungal
Bioremediation
Homologs
Biphenyl (not a PCB) 92-52-4 0 1 Monochlorobiphenyl 27323-18-8 1 3 Dichlorobiphenyl 25512-42-9 2 12 Trichlorobiphenyl 25323-68-6 3 24 Tetrachlorobiphenyl 26914-33-0 4 42 Pentachlorobiphenyl 25429-29-2 5 46 Hexachlorobiphenyl 26601-64-9 6 42 Heptachlorobiphenyl 28655-71-2 7 24 Octachlorobiphenyl 55722-26-4 8 12 Nonachlorobiphenyl 53742-07-7 9 3 Decachlorobiphenyl 2051-24-3 10 1
See also
External links
|
|