Alkalinity (from ) is the capacity of water to resist acidification. It should not be confused with basicity, which is an absolute measurement on the pH scale. Alkalinity is the strength of a buffer solution composed of and their conjugate acid. It is measured by Titration the solution with an acid such as HCl until its pH changes abruptly, or it reaches a known endpoint where that happens. Alkalinity is expressed in units of concentration, such as meq/L (milliequivalents per liter), μeq/kg (microequivalents per kilogram), or mg/L CaCO3 (milligrams per liter of calcium carbonate). Each of these measurements corresponds to an amount of acid added as a titrant.
In Fresh water, particularly those on non-limestone terrains, alkalinities are low and involve a lot of ions. In the ocean, on the other hand, alkalinity is completely dominated by carbonate and bicarbonate plus a small contribution from borate.
Although alkalinity is primarily a term used by Limnology and Oceanography, it is also used by hydrologists to describe temporary hardness. Moreover, measuring alkalinity is important in determining a stream's ability to neutralize acidic pollution from Acid rain or wastewater. It is one of the best measures of the sensitivity of the stream to acid inputs. There can be long-term changes in the alkalinity of streams and rivers in response to human disturbances such as acid rain generated by SO x and NO x emissions.
Also in 1884, Svante Arrhenius submitted his PhD theses in which he advocated the existence of in solution, and defined acids as hydronium ion donors and bases as hydroxide ion donors. For that work, he received the Nobel Prize in Chemistry in 1903. See also Svante Arrhenius#Ionic disassociation.
Certain ions, including Na+, K+, Ca2+, Mg2+, Cl−, , and are " conservative" such that they are unaffected by changes in temperature, pressure or pH. Others such as are affected by changes in pH, temperature, and pressure. By isolating the conservative ions on one side of this charge balance equation, the nonconservative ions which accept or donate protons and thus define alkalinity are clustered on the other side of the equation.
This combined charge balance and proton balance is called total alkalinity. Total alkalinity is not (much) affected by temperature, pressure, or pH, and is thus itself a conservative measurement, which increases its usefulness in aquatic systems. All anions except and have low concentrations in Earth's surface water (streams, rivers, and lakes). Thus carbonate alkalinity, which is equal to is also approximately equal to the total alkalinity in surface water.
A variety of Titration, endpoints, and PH indicator are specified for various alkalinity measurement methods. Hydrochloric and Sulfuric acid acids are common acid titrants, while Phenolphthalein, methyl red, and bromocresol green are common indicators.
(Subscript T indicates the total concentration of the species in the solution as measured. This is opposed to the free concentration, which takes into account the significant amount of ion pair interactions that occur in seawater.)
Alkalinity can be measured by titrating a sample with a strong acid until all the buffering capacity of the aforementioned ions above the pH of bicarbonate or carbonate is consumed. This point is functionally set to pH 4.5. At this point, all the bases of interest have been protonated to the zero level species, hence they no longer cause alkalinity. In the carbonate system the bicarbonate ions and the carbonate ions have become converted to carbonic acid H2CO3 at this pH. This pH is also called the CO2 equivalence point where the major component in water is dissolved CO2 which is converted to H2CO3 in an aqueous solution. There are no strong acids or bases at this point. Therefore, the alkalinity is modeled and quantified with respect to the CO2 equivalence point. Because the alkalinity is measured with respect to the CO2 equivalence point, the dissolution of CO2, although it adds acid and dissolved inorganic carbon, does not change the alkalinity. In natural conditions, the dissolution of basic rocks and addition of ammonia NH3 or organic amines leads to the addition of base to natural waters at the CO2 equivalence point. The dissolved base in water increases the pH and titrates an equivalent amount of CO2 to bicarbonate ion and carbonate ion. At equilibrium, the water contains a certain amount of alkalinity contributed by the concentration of weak acid anions. Conversely, the addition of acid converts weak acid anions to CO2 and continuous addition of strong acids can cause the alkalinity to become less than zero.Benjamin. Mark M. 2015. Water Chemistry. 2nd Ed. Long Grove, Illinois: Waveland Press, Inc. For example, the following reactions take place during the addition of acid to a typical seawater solution:
It can be seen from the above protonation reactions that most bases consume one proton (H+) to become a neutral species, thus increasing alkalinity by one per equivalent. however, will consume two protons before becoming a zero-level species (CO2), thus it increases alkalinity by two per mole of . H+ and decrease alkalinity, as they act as sources of protons. They are often represented collectively as H+T.
Alkalinity is typically reported as mg/L as CaCO3. (The conjunction "as" is appropriate in this case because the alkalinity results from a mixture of ions but is reported "as if" all of this is due to CaCO3.) This can be converted into milliequivalents per Liter (meq/L) by dividing by 50 (the approximate Molar mass of CaCO3 divided by 2).
At all pH values:
Only at high (basic) pH values:
Another way of writing this is:
The lower the pH, the higher the concentration of bicarbonate will be. This shows how a lower pH can lead to higher alkalinity if the amount of bicarbonate produced is greater than the amount of H+ remaining after the reaction. This is the case since the amount of acid in the rainwater is low. If this alkaline groundwater later comes into contact with the atmosphere, it can lose CO2, precipitate carbonate, and thereby become less alkaline again. When carbonate minerals, water, and the atmosphere are all in equilibrium, the reversible reaction
shows that pH will be related to calcium ion concentration, with lower pH going with higher calcium ion concentration. In this case, the higher the pH, the more bicarbonate and carbonate ion there will be, in contrast to the paradoxical situation described above, where one does not have equilibrium with the atmosphere.
Thus the chemical equation for alkalinity in seawater is:
There are many methods of alkalinity generation in the ocean. Perhaps the most well known is the dissolution of calcium carbonate to form Ca2+ and (carbonate). The carbonate ion has the potential to absorb two hydrogen ions. Therefore, it causes a net increase in ocean alkalinity. Calcium carbonate dissolution occurs in regions of the ocean which are undersaturated with respect to calcium carbonate.
The increasing carbon dioxide level in the atmosphere, due to carbon dioxide emissions, results in increasing absorption of CO2 from the atmosphere into the oceans. Text was copied from this source, which is available under a This does not affect the ocean's alkalinityIPCC, 2021: Annex VII: Glossary Matthews,. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson-Delmotte,. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA but it does result in a reduction in pH value (called ocean acidification). Text was copied from this source, which is available under a Ocean alkalinity enhancement has been proposed as one option to add alkalinity to the ocean and therefore buffer against pH changes.
Biological processes have a much greater impact on oceanic alkalinity on short (minutes to centuries) timescales.
Alkalinity varies by location depending on evaporation/precipitation, advection of water, biological processes, and geochemical processes.
River dominated mixing also occurs close to the shore; it is strongest close to the mouth of a large river. Here, the rivers can act as either a source or a sink of alkalinity. AT follows the outflow of the river and has a linear relationship with salinity.
Oceanic alkalinity also follows general trends based on latitude and depth. It has been shown that AT is often inversely proportional to sea surface temperature (SST). Therefore, it generally increases with high latitudes and depths. As a result, upwelling areas (where water from the deep ocean is pushed to the surface) also have higher alkalinity values.Millero, F. J.; Lee, K.; Roche, M. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry. 1998, 60, 111-130.
There are many programs to measure, record, and study oceanic alkalinity, together with many of the other characteristics of seawater, like temperature and salinity. These include: GEOSECS (Geochemical Ocean Sections Study), TTO/NAS (Transient Tracers in the Ocean/North Atlantic Study), JGOFS (Joint Global Ocean Flux Study), WOCE (World Ocean Circulation Experiment), CARINA (Carbon dioxide in the Atlantic Ocean).
|
|