A xenobiotic is a chemical substance found within an organism that is not naturally produced or expected to be present within the organism. It can also cover substances that are present in much higher than are usual. Natural compounds can also become xenobiotics if they are taken up by another organism, such as the uptake of natural human hormones by fish found downstream of sewage treatment plant outfalls, or the chemical defenses produced by some organisms as protection against predators. The term "xenobiotic" is also used to refer to organs transplanted from one species to another.
The term "xenobiotics", however, is very often used in the context of pollutants such as dioxins and polychlorinated biphenyls and their effect on the biota, because xenobiotics are understood as substances foreign to an entire biological system, i.e. artificial substances, which did not exist in nature before their synthesis by humans. The term xenobiotic and βίος (bios) = life, plus the Greek suffix for adjectives -τικός, -ή, -όν (-tikos, -ē, -on). Xenobiotics may be grouped as , drugs, environmental pollutants, , hydrocarbons, and pesticides.
Although the body is able to remove xenobiotics by reducing it to a less toxic form through xenobiotic metabolism then excreting it, it is also possible for it to be converted into a more toxic form in some cases. This process is referred to as bioactivation and can result in structural and functional changes to the microbiota. Exposure to xenobiotics can disrupt the microbiome community structure, either by increasing or decreasing the size of certain bacterial populations depending on the substance. Functional changes that result vary depending on the substance and can include increased expression in genes involved in stress response and antibiotic resistance, changes in the levels of metabolites produced, etc.
Organisms can also Evolution to tolerate xenobiotics. An example is the co-evolution of the production of tetrodotoxin in the rough-skinned newt and the evolution of tetrodotoxin resistance in its predator, the Common Garter Snake. In this predator–prey pair, an evolutionary arms race has produced high levels of toxin in the newt and correspondingly high levels of resistance in the snake. This evolutionary response is based on the snake evolving modified forms of the that the toxin acts upon, so becoming resistant to its effects. Another example of a xenobiotic tolerance mechanism is the use of ATP-binding cassette (ABC) transporters, which is largely exhibited in insects. Such transporters contribute to resistance by enabling the transport of toxins across the cell membrane, thus preventing accumulation of these substances within cells.
Some xenobiotics substances are resistant to degradation. Xenobiotics such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trichloroethylene (TCE) accumulate in the environment due to their recalcitrant properties and have become an environmental concern due to their toxicity and accumulation. This occurs particularly in the subsurface environment and water sources, as well as in biological systems, having the potential to impact human health.
Microorganisms may be a viable solution to this issue of environmental pollution by the degradation of the xenobiotics; a process known as bioremediation. Microorganisms are able to adapt to xenobiotics introduced into the environment through horizontal gene transfer, in order to make use of such compounds as energy sources. This process can be further altered to manipulate the metabolic pathways of microorganisms in order to degrade harmful xenobiotics under specific environmental conditions at a more desirable rate. Mechanisms of bioremediation include both genetically engineering microorganisms and isolating the naturally occurring xenobiotic degrading microbes. Research has been conducted to identify the genes responsible for the ability of microorganisms to metabolize certain xenobiotics and it has been suggested that this research can be used in order to engineer microorganisms specifically for this purpose. Not only can current pathways be engineered to be expressed in other organisms, but the creation of novel pathways is a possible approach.
Xenobiotics may be limited in the environment and difficult to access in areas such as the subsurface environment. Degradative organisms can be engineered to increase mobility in order to access these compounds, including enhanced chemotaxis. One limitation of the bioremediation process is that optimal conditions are required for proper metabolic functioning of certain microorganisms, which may be difficult to meet in an environmental setting. In some cases a single microorganism may not be capable of performing all metabolic processes required for degradation of a xenobiotic compound and so "syntrophic bacterial consortia" may be employed. In this case, a group of bacteria work in conjunction, resulting in dead end products from one organism being further degraded by another organism. In other cases, the products of one microorganisms may inhibit the activity another, and thus a balance must be maintained.
Many xenobiotics produce a variety of biological effects, which is used when they are characterized using bioassay. Before they can be registered for sale in most countries, xenobiotic pesticides must undergo extensive evaluation for risk factors, such as toxicity to humans, ecotoxicity, or persistence in the environment. For example, during the registration process, the herbicide, cloransulam-methyl was found to degrade relatively quickly in soil.
|
|