Product Code Database
Example Keywords: sail -data $77-121
   » » Wiki: Wormhole
Tag Wiki 'Wormhole'.
Tag

A wormhole is a hypothetical structure that connects disparate points in . It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are based on a special solution of the Einstein field equations. Wormholes are consistent with the general theory of relativity, but whether they actually exist is unknown. Many physicists postulate that wormholes are merely projections of a fourth spatial dimension, analogous to how a two-dimensional (2D) being could experience only part of a three-dimensional (3D) object.

In 1995, suggested there may be many wormholes in the universe if with were generated in the early universe. Some physicists, such as , have suggested how to create wormholes artificially.

(1994). 9780393312768


Terminology
In 1928, German mathematician, philosopher and theoretical physicist proposed a wormhole hypothesis of matter in connection with mass analysis of electromagnetic field energy;
(2025). 9783764364762, Springer. .
however, he did not use the term "wormhole" (he spoke of "one-dimensional tubes" instead). "Hermann Weyl": entry in the Stanford Encyclopedia of Philosophy.

American theoretical physicist John Archibald Wheeler (inspired by Weyl's work) coined the term "wormhole". In a 1957 paper that he wrote with Charles W. Misner, they write:


Modern definitions
Wormholes have been defined both and . From a topological point of view, an intra-universe wormhole (a wormhole between two points in the same universe) is a region of spacetime whose boundary is topologically trivial, but whose interior is not . Formalizing this idea leads to definitions such as the following, taken from Matt Visser's Lorentzian Wormholes (1996).

Geometrically, wormholes can be described as regions of spacetime that constrain the incremental deformation of closed surfaces. For example, in Enrico Rodrigo's The Physics of Stargates, a wormhole is defined informally as:


Development

Schwarzschild wormholes
The first type of wormhole solution discovered was the Schwarzschild wormhole, which would be present in the Schwarzschild metric describing an eternal black hole, but it was found that it would collapse too quickly for anything to cross from one end to the other. Wormholes that could be crossed in both directions, known as traversable wormholes, were thought to be possible only if with could be used to stabilize them. Later, physicists reported that microscopic traversable wormholes may be possible and not require any exotic matter, instead requiring only electrically charged matter with small enough mass that it cannot collapse into a charged black hole. While such wormholes, if possible, may be limited to transfers of information, humanly traversable wormholes may exist if reality can broadly be described by the Randall–Sundrum model 2, a -based theory consistent with . Available under CC BY 4.0.


Einstein–Rosen bridges
Einstein–Rosen bridges (or ER bridges),Vladimir Dobrev (ed.), Lie Theory and Its Applications in Physics: Varna, Bulgaria, June 2015, Springer, 2016, p. 246. named after and , are connections between areas of space that can be modeled as to the Einstein field equations, and that are now understood to be intrinsic parts of the maximally extended version of the Schwarzschild metric describing an eternal black hole with no charge and no rotation. Here, "maximally extended" refers to the idea that the should not have any "edges": it should be possible to continue this path arbitrarily far into the particle's future or past for any possible trajectory of a free-falling particle (following a geodesic in the spacetime).

In order to satisfy this requirement, it turns out that in addition to the black hole interior region that particles enter when they fall through the from the outside, there must be a separate interior region that allows us to extrapolate the trajectories of particles that an outside observer sees rising up away from the event horizon. And just as there are two separate interior regions of the maximally extended spacetime, there are also two separate exterior regions, sometimes called two different "universes", with the second universe allowing us to extrapolate some possible particle trajectories in the two interior regions. This means that the interior black hole region can contain a mix of particles that fell in from either universe (and thus an observer who fell in from one universe might be able to see the light that fell in from the other one), and likewise particles from the interior white hole region can escape into either universe. All four regions can be seen in a spacetime diagram that uses Kruskal–Szekeres coordinates.

In this spacetime, it is possible to come up with coordinate systems such that if a of constant time (a set of points that all have the same time coordinate, such that every point on the surface has a separation, giving what is called a 'space-like surface') is picked and an "embedding diagram" drawn depicting the curvature of space at that time, the embedding diagram will look like a tube connecting the two exterior regions, known as an "Einstein–Rosen bridge". The Schwarzschild metric describes an idealized black hole that exists eternally from the perspective of external observers; a more realistic black hole that forms at some particular time from a collapsing star would require a different metric. When the infalling stellar matter is added to a diagram of a black hole's geography, it removes the part of the diagram corresponding to the white hole interior region, along with the part of the diagram corresponding to the other universe.

The Einstein–Rosen bridge was discovered by in 1916, ("Comments on Einstein's Theory of Gravity") a few months after Schwarzschild published his solution, and was rediscovered by Albert Einstein and his colleague Nathan Rosen, who published their result in 1935.A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev. 48(73) (1935). In 1962, John Archibald Wheeler and Robert W. Fuller published a paper showing that this type of wormhole is unstable if it connects two parts of the same universe, and that it will pinch off too quickly for light (or any particle moving slower than light) that falls in from one exterior region to make it to the other exterior region.

According to general relativity, the gravitational collapse of a sufficiently compact mass forms a singular Schwarzschild black hole. In the Einstein–Cartan–Sciama–Kibble theory of gravity, however, it forms a regular Einstein–Rosen bridge. This theory extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the , as a dynamic variable. Torsion naturally accounts for the quantum-mechanical, intrinsic angular momentum (spin) of matter. The minimal coupling between torsion and generates a repulsive spin–spin interaction that is significant in fermionic matter at extremely high densities. Such an interaction prevents the formation of a gravitational singularity (e.g. a black hole). Instead, the collapsing matter reaches an enormous but finite density and rebounds, forming the other side of the bridge.

Although Schwarzschild wormholes are not traversable in both directions, their existence inspired to imagine traversable wormholes created by holding the "throat" of a Schwarzschild wormhole open with (material that has negative mass/energy).

(1994). 9780393312768

Other non-traversable wormholes include Lorentzian wormholes (first proposed by John Archibald Wheeler in 1957), wormholes creating a in a general relativistic spacetime manifold depicted by a Lorentzian manifold, (A follow-up paper to Misner and Wheeler (December 1957).) and Euclidean wormholes (named after Euclidean manifold, a structure of Riemannian manifold).Eduard Prugovecki, Quantum Geometry: A Framework for Quantum General Relativity, Springer, 2013, p. 412.


Traversable wormholes
The shows that quantum field theory allows the energy density in certain regions of space to be negative relative to the ordinary matter , and it has been shown theoretically that quantum field theory allows states where energy can be arbitrarily at a given point.
(2025). 9780226224985, University of Chicago Press. .
Many physicists, such as , , and others, argued that such effects might make it possible to stabilize a traversable wormhole. The only known natural process that is theoretically predicted to form a wormhole in the context of general relativity and quantum mechanics was put forth by and in their ER = EPR conjecture. The hypothesis is sometimes used to suggest that tiny wormholes might appear and disappear spontaneously at the , and stable versions of such wormholes have been suggested as candidates. It has also been proposed that, if a tiny wormhole held open by a had appeared around the time of the , it could have been inflated to macroscopic size by cosmic inflation.

Lorentzian traversable wormholes would allow travel in both directions from one part of the universe to another part of that same universe very quickly or would allow travel from one universe to another. The possibility of traversable wormholes in general relativity was first demonstrated in a 1973 paper by Homer Ellis and independently in a 1973 paper by K. A. Bronnikov. Ellis analyzed the topology and the of the , showing it to be geodesically complete, horizonless, singularity-free, and fully traversable in both directions. The drainhole is a solution manifold of Einstein's field equations for a vacuum spacetime, modified by inclusion of a scalar field minimally coupled to the with antiorthodox polarity (negative instead of positive). (Ellis specifically rejected referring to the scalar field as 'exotic' because of the antiorthodox coupling, finding arguments for doing so unpersuasive.) The solution depends on two parameters: , which fixes the strength of its gravitational field, and , which determines the curvature of its spatial cross sections. When is set equal to 0, the drainhole's gravitational field vanishes. What is left is the , a nongravitating, purely geometric, traversable wormhole.

and his graduate student Mike Morris independently discovered in 1988 the Ellis wormhole and argued for its use as a tool for teaching general relativity. For this reason, the type of traversable wormhole they proposed, held open by a spherical shell of , is also known as a Morris–Thorne wormhole.

Later, other types of traversable wormholes were discovered as allowable solutions to the equations of general relativity, including a variety analyzed in a 1989 paper by Matt Visser, in which a path through the wormhole can be made where the traversing path does not pass through a region of exotic matter. In the pure Gauss–Bonnet gravity (a modification to general relativity involving extra spatial dimensions that is sometimes studied in the context of ), however, exotic matter is not needed in order for wormholes to exist—they can exist even with no matter. A type held open by negative mass was put forth by Visser in collaboration with Cramer et al., in which it was proposed that such wormholes could have been naturally created in the early universe.

Wormholes connect two points in spacetime, which means that they would in principle allow , as well as in space. In 1988, Morris, Thorne and Yurtsever worked out how to convert a wormhole traversing space into one traversing time by accelerating one of its two mouths. According to general relativity, however, it would not be possible to use a wormhole to travel back to a time earlier than when the wormhole was first converted into a time "machine". Until this time it could not have been noticed or have been used.


Raychaudhuri's theorem and exotic matter
To see why is required, consider an incoming light front traveling along geodesics, which then crosses the wormhole and re-expands on the other side. The expansion goes from negative to positive. As the wormhole neck is of finite size, we would not expect caustics to develop, at least within the vicinity of the neck. According to the optical Raychaudhuri's theorem, this requires a violation of the averaged null energy condition. Quantum effects such as the cannot violate the averaged null energy condition in any neighborhood of space with zero curvature, but calculations in semiclassical gravity suggest that quantum effects may be able to violate this condition in curved spacetime. Although it was hoped recently that quantum effects could not violate an achronal version of the averaged null energy condition, violations have nevertheless been found, so it remains an open possibility that quantum effects might be used to support a wormhole.


Modified general relativity
In some hypotheses where general relativity is modified, it is possible to have a wormhole that does not collapse without having to resort to exotic matter. For example, this is possible with R gravity, a form of () gravity.


Faster-than-light travel
The impossibility of faster-than-light relative speed applies only locally. Wormholes might allow effective superluminal (faster-than-light) travel by ensuring that the speed of light is not exceeded locally at any time. While traveling through a wormhole, subluminal (slower-than-light) speeds are used. If two points are connected by a wormhole whose length is shorter than the distance between them outside the wormhole, the time taken to traverse it could be less than the time it would take a light beam to make the journey if it took a path through the space outside the wormhole. A light beam traveling through the same wormhole would still beat the traveler.


Time travel
If traversable wormholes exist, they might allow . A proposed time-travel machine using a traversable wormhole might hypothetically work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both these methods, causes the end of the wormhole that has been moved to have aged less, or become "younger", than the stationary end as seen by an external observer; time connects differently through the wormhole than outside it, however, so that clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around.
(1994). 9780393312768, W. W. Norton.
This means that an observer entering the "younger" end would exit the "older" end at a time when it was the same age as the "younger" end, effectively going back in time as seen by an observer from the outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine; it is more of a path through time rather than it is a device that itself moves through time, and it would not allow the technology itself to be moved backward in time.
(2025). 9780226224985, University of Chicago Press. .

According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as "". More technically, the wormhole spacetime requires a distribution of energy that violates various , such as the null energy condition along with the weak, strong, and dominant energy conditions. It is known that quantum effects can lead to small measurable violations of the null energy condition,

(1996). 9781563966538, Springer-Verlag.
and many physicists believe that the required negative energy may actually be possible due to the in quantum physics. Although early calculations suggested a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.

In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other, or otherwise prevent information from passing through the wormhole. Because of this, the two mouths could not be brought close enough for causality violation to take place. In a 1997 paper, however, Visser hypothesized that a complex "" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.


Interuniversal travel
A possible resolution to the paradoxes resulting from wormhole-enabled time travel rests on the many-worlds interpretation of quantum mechanics.

In 1991 showed that quantum theory is fully consistent (in the sense that the so-called can be made free of discontinuities) in spacetimes with closed timelike curves. Later, it was shown that such a model of closed timelike curves can have internal inconsistencies as it will lead to strange phenomena like distinguishing non-orthogonal quantum states and distinguishing proper and improper mixture. Accordingly, the destructive positive feedback loop of virtual particles circulating through a wormhole time machine, a result indicated by semi-classical calculations, is averted. A particle returning from the future does not return to its universe of origination but to a parallel universe. This suggests that a wormhole time machine with an exceedingly short time jump is a theoretical bridge between contemporaneous parallel universes.

(2025). 9780984150007, Eridanus Press.

Because a wormhole time-machine introduces a type of nonlinearity into quantum theory, this sort of communication between parallel universes is consistent with Joseph Polchinski's proposal of an Everett phone (named after Hugh Everett) in 's formulation of nonlinear quantum mechanics.Enrico Rodrigo, The Physics of Stargates: Parallel Universes, Time Travel, and the Enigma of Wormhole Physics, Eridanus Press, 2010, p. 281.

The possibility of communication between parallel universes has been dubbed interuniversal travel.Samuel Walker, "Inter-universal travel: I wouldn't start from here, (1 February 2017).

Wormholes can also be depicted in a of a Schwarzschild black hole. In the Penrose diagram, an object traveling faster than light will cross the black hole and will emerge from another end into a different space, time or universe. This will be an inter-universal wormhole.


Metrics
Theories of wormhole metrics describe the spacetime geometry of a wormhole and serve as theoretical models for time travel. An example of a (traversable) wormhole is the following:
(2025). 9781848163836, Imperial College Press. .

first presented by Ellis (see ) as a special case of the .

One type of non-traversable wormhole is the Schwarzschild solution (see the first diagram):

+ r^2(d \theta^2 + \sin^2 \theta \, d\varphi^2).}}
     

The original Einstein–Rosen bridge was described in an article published in July 1935.

For the Schwarzschild spherically symmetric static solution

\, dr^2 - r^2(d\theta^2 + \sin^2 \theta \, d\varphi^2) + \left(1 - \frac{2m}{r} \right) \, dt^2,}}
     
where ds is the proper time and c = 1.

If one replaces r with u according to u^2 = r - 2m

For the combined field, gravity and electricity, Einstein and Rosen derived the following Schwarzschild static spherically symmetric solution

where \varepsilon is the electric charge.

The field equations without denominators in the case when m = 0 can be written

In order to eliminate singularities, if one replaces r by u according to the equation:

and with m = 0 one obtains


In fiction
Wormholes are a common element in because they allow interstellar, intergalactic, and sometimes even interuniversal travel within human lifetime scales. In fiction, wormholes have also served as a method for .


Warp portals and higher-dimensional shortcuts
In theoretical physics and , the concept of a warp or warp portal is frequently used to describe shortcuts through space that are only possible by accessing a higher spatial dimension. Just as a two-dimensional space would require a to bend or fold its plane in order to bring two distant points together, a three-dimensional space must be embedded within a fourth spatial dimension to allow similar manipulation.Greene, Brian (2004). The Fabric of the Cosmos. Knopf. ISBN 978-0375727207. This analogy underlies many depictions of warp portals, which function by bending or folding three-dimensional space through the fourth spatial axis, allowing distant regions to become adjacent.

The existence of such a mechanism would imply that the universe possesses, or is embedded within, a four-dimensional spatial framework, even if that dimension is not directly observable. The geometry of these constructs is often modeled using solutions to Einstein's field equations, such as ,Morris, Michael S.; Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics. 56 (5): 395–412. doi:10.1119/1.15620. and the ,Alcubierre, Miguel (1994). "The warp drive: hyper-fast travel within general relativity". Classical and Quantum Gravity. 11 (5): L73–L77. doi:10.1088/0264-9381/11/5/001. both of which rely on higher-dimensional curvature.


See also


Notes

Citations

Sources
  • (2025). 9789812566676
  • An excellent and more concise review.


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
2s Time