A wormhole is a hypothetical structure that connects disparate points in spacetime. It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are based on a special solution of the Einstein field equations. Wormholes are consistent with the general theory of relativity, but whether they actually exist is unknown. Many physicists postulate that wormholes are merely projections of a fourth spatial dimension, analogous to how a two-dimensional (2D) being could experience only part of a three-dimensional (3D) object.
In 1995, Matt Visser suggested there may be many wormholes in the universe if with negative mass were generated in the early universe. Some physicists, such as Kip Thorne, have suggested how to create wormholes artificially.
American theoretical physicist John Archibald Wheeler (inspired by Weyl's work) coined the term "wormhole". In a 1957 paper that he wrote with Charles W. Misner, they write:
Geometrically, wormholes can be described as regions of spacetime that constrain the incremental deformation of closed surfaces. For example, in Enrico Rodrigo's The Physics of Stargates, a wormhole is defined informally as:
In order to satisfy this requirement, it turns out that in addition to the black hole interior region that particles enter when they fall through the event horizon from the outside, there must be a separate white hole interior region that allows us to extrapolate the trajectories of particles that an outside observer sees rising up away from the event horizon. And just as there are two separate interior regions of the maximally extended spacetime, there are also two separate exterior regions, sometimes called two different "universes", with the second universe allowing us to extrapolate some possible particle trajectories in the two interior regions. This means that the interior black hole region can contain a mix of particles that fell in from either universe (and thus an observer who fell in from one universe might be able to see the light that fell in from the other one), and likewise particles from the interior white hole region can escape into either universe. All four regions can be seen in a spacetime diagram that uses Kruskal–Szekeres coordinates.
In this spacetime, it is possible to come up with coordinate systems such that if a hypersurface of constant time (a set of points that all have the same time coordinate, such that every point on the surface has a space-like separation, giving what is called a 'space-like surface') is picked and an "embedding diagram" drawn depicting the curvature of space at that time, the embedding diagram will look like a tube connecting the two exterior regions, known as an "Einstein–Rosen bridge". The Schwarzschild metric describes an idealized black hole that exists eternally from the perspective of external observers; a more realistic black hole that forms at some particular time from a collapsing star would require a different metric. When the infalling stellar matter is added to a diagram of a black hole's geography, it removes the part of the diagram corresponding to the white hole interior region, along with the part of the diagram corresponding to the other universe.
The Einstein–Rosen bridge was discovered by Ludwig Flamm in 1916, ("Comments on Einstein's Theory of Gravity") a few months after Schwarzschild published his solution, and was rediscovered by Albert Einstein and his colleague Nathan Rosen, who published their result in 1935.A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev. 48(73) (1935). In 1962, John Archibald Wheeler and Robert W. Fuller published a paper showing that this type of wormhole is unstable if it connects two parts of the same universe, and that it will pinch off too quickly for light (or any particle moving slower than light) that falls in from one exterior region to make it to the other exterior region.
According to general relativity, the gravitational collapse of a sufficiently compact mass forms a singular Schwarzschild black hole. In the Einstein–Cartan–Sciama–Kibble theory of gravity, however, it forms a regular Einstein–Rosen bridge. This theory extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the torsion tensor, as a dynamic variable. Torsion naturally accounts for the quantum-mechanical, intrinsic angular momentum (spin) of matter. The minimal coupling between torsion and generates a repulsive spin–spin interaction that is significant in fermionic matter at extremely high densities. Such an interaction prevents the formation of a gravitational singularity (e.g. a black hole). Instead, the collapsing matter reaches an enormous but finite density and rebounds, forming the other side of the bridge.
Although Schwarzschild wormholes are not traversable in both directions, their existence inspired Kip Thorne to imagine traversable wormholes created by holding the "throat" of a Schwarzschild wormhole open with exotic matter (material that has negative mass/energy).
Other non-traversable wormholes include Lorentzian wormholes (first proposed by John Archibald Wheeler in 1957), wormholes creating a spacetime foam in a general relativistic spacetime manifold depicted by a Lorentzian manifold, (A follow-up paper to Misner and Wheeler (December 1957).) and Euclidean wormholes (named after Euclidean manifold, a structure of Riemannian manifold).Eduard Prugovecki, Quantum Geometry: A Framework for Quantum General Relativity, Springer, 2013, p. 412.
Lorentzian traversable wormholes would allow travel in both directions from one part of the universe to another part of that same universe very quickly or would allow travel from one universe to another. The possibility of traversable wormholes in general relativity was first demonstrated in a 1973 paper by Homer Ellis and independently in a 1973 paper by K. A. Bronnikov. Ellis analyzed the topology and the of the Ellis drainhole, showing it to be geodesically complete, horizonless, singularity-free, and fully traversable in both directions. The drainhole is a solution manifold of Einstein's field equations for a vacuum spacetime, modified by inclusion of a scalar field minimally coupled to the Ricci tensor with antiorthodox polarity (negative instead of positive). (Ellis specifically rejected referring to the scalar field as 'exotic' because of the antiorthodox coupling, finding arguments for doing so unpersuasive.) The solution depends on two parameters: , which fixes the strength of its gravitational field, and , which determines the curvature of its spatial cross sections. When is set equal to 0, the drainhole's gravitational field vanishes. What is left is the Ellis wormhole, a nongravitating, purely geometric, traversable wormhole.
Kip Thorne and his graduate student Mike Morris independently discovered in 1988 the Ellis wormhole and argued for its use as a tool for teaching general relativity. For this reason, the type of traversable wormhole they proposed, held open by a spherical shell of exotic matter, is also known as a Morris–Thorne wormhole.
Later, other types of traversable wormholes were discovered as allowable solutions to the equations of general relativity, including a variety analyzed in a 1989 paper by Matt Visser, in which a path through the wormhole can be made where the traversing path does not pass through a region of exotic matter. In the pure Gauss–Bonnet gravity (a modification to general relativity involving extra spatial dimensions that is sometimes studied in the context of brane cosmology), however, exotic matter is not needed in order for wormholes to exist—they can exist even with no matter. A type held open by negative mass was put forth by Visser in collaboration with Cramer et al., in which it was proposed that such wormholes could have been naturally created in the early universe.
Wormholes connect two points in spacetime, which means that they would in principle allow time travel, as well as in space. In 1988, Morris, Thorne and Yurtsever worked out how to convert a wormhole traversing space into one traversing time by accelerating one of its two mouths. According to general relativity, however, it would not be possible to use a wormhole to travel back to a time earlier than when the wormhole was first converted into a time "machine". Until this time it could not have been noticed or have been used.
According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as "exotic matter". More technically, the wormhole spacetime requires a distribution of energy that violates various , such as the null energy condition along with the weak, strong, and dominant energy conditions. It is known that quantum effects can lead to small measurable violations of the null energy condition, and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics. Although early calculations suggested a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.
In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other, or otherwise prevent information from passing through the wormhole. Because of this, the two mouths could not be brought close enough for causality violation to take place. In a 1997 paper, however, Visser hypothesized that a complex "Roman ring" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.
In 1991 David Deutsch showed that quantum theory is fully consistent (in the sense that the so-called density matrix can be made free of discontinuities) in spacetimes with closed timelike curves. Later, it was shown that such a model of closed timelike curves can have internal inconsistencies as it will lead to strange phenomena like distinguishing non-orthogonal quantum states and distinguishing proper and improper mixture. Accordingly, the destructive positive feedback loop of virtual particles circulating through a wormhole time machine, a result indicated by semi-classical calculations, is averted. A particle returning from the future does not return to its universe of origination but to a parallel universe. This suggests that a wormhole time machine with an exceedingly short time jump is a theoretical bridge between contemporaneous parallel universes.
Because a wormhole time-machine introduces a type of nonlinearity into quantum theory, this sort of communication between parallel universes is consistent with Joseph Polchinski's proposal of an Everett phone (named after Hugh Everett) in Steven Weinberg's formulation of nonlinear quantum mechanics.Enrico Rodrigo, The Physics of Stargates: Parallel Universes, Time Travel, and the Enigma of Wormhole Physics, Eridanus Press, 2010, p. 281.
The possibility of communication between parallel universes has been dubbed interuniversal travel.Samuel Walker, "Inter-universal travel: I wouldn't start from here, New Scientist (1 February 2017).
Wormholes can also be depicted in a Penrose diagram of a Schwarzschild black hole. In the Penrose diagram, an object traveling faster than light will cross the black hole and will emerge from another end into a different space, time or universe. This will be an inter-universal wormhole.
first presented by Ellis (see Ellis wormhole) as a special case of the Ellis drainhole.
One type of non-traversable wormhole metric tensor is the Schwarzschild solution (see the first diagram):
The original Einstein–Rosen bridge was described in an article published in July 1935.
For the Schwarzschild spherically symmetric static solution
If one replaces with according to
For the combined field, gravity and electricity, Einstein and Rosen derived the following Schwarzschild static spherically symmetric solution
where is the electric charge.
The field equations without denominators in the case when can be written
In order to eliminate singularities, if one replaces by according to the equation:
The existence of such a mechanism would imply that the universe possesses, or is embedded within, a four-dimensional spatial framework, even if that dimension is not directly observable. The geometry of these constructs is often modeled using solutions to Einstein's field equations, such as ,Morris, Michael S.; Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics. 56 (5): 395–412. doi:10.1119/1.15620. and the Alcubierre drive,Alcubierre, Miguel (1994). "The warp drive: hyper-fast travel within general relativity". Classical and Quantum Gravity. 11 (5): L73–L77. doi:10.1088/0264-9381/11/5/001. both of which rely on higher-dimensional curvature.
Modern definitions
Development
Schwarzschild wormholes
Einstein–Rosen bridges
Traversable wormholes
Raychaudhuri's theorem and exotic matter
Modified general relativity
Faster-than-light travel
Time travel
Interuniversal travel
Metrics
+ r^2(d \theta^2 + \sin^2 \theta \, d\varphi^2).}}
\, dr^2 - r^2(d\theta^2 + \sin^2 \theta \, d\varphi^2) + \left(1 - \frac{2m}{r} \right) \, dt^2,}}
where is the proper time and .
In fiction
Warp portals and higher-dimensional shortcuts
See also
Notes
Citations
Sources
External links
target="_blank" rel="nofollow"> Renderings and animations of a Morris-Thorne wormhole
|
|