Product Code Database
Example Keywords: wi-fi -super $60-155
barcode-scavenger
   » Wiki: Transducer
Tag Wiki 'Transducer'.
Tag

A transducer is a device that usefully converts energy from one form to another.

(2025). 9781447132653, Springer Science & Business Media. .
Usually a transducer converts a in one form of energy to a signal in another.
(2025). 9780080506814, Elsevier.
Transducers are often employed at the boundaries of , measurement, and , where electrical signals are converted to and from other physical quantities (energy, force, torque, light, motion, position, etc.). The process of converting one form of energy to another is known as transduction.
(2025). 9780240821009, Focal Press. .


Types
  • Mechanical transducers convert physical quantities into mechanical outputs or vice versa;
  • Electrical transducers convert physical quantities into electrical outputs or signals. Examples of these are:
    • a that changes temperature differences into a small voltage;
    • a linear variable differential transformer (LVDT), used to measure displacement (position) changes by means of electrical signals.


Sensors, actuators and transceivers
Transducers can be categorized by the direction information passes through them:
  • A is a transducer that receives and responds to a signal or stimulus from a physical system.Fraden J. (2016). Handbook of Modern Sensors: Physics, Designs, and Applications 5th ed. Springer. p.1Kalantar-zadeh, K. (2013). Sensors: An Introductory Course 2013th Edition. Springer. p.1 It produces a , which represents information about the system, which is used by some type of telemetry, information or .
  • An is a device that is responsible for moving or controlling a mechanism or system. It is controlled by a from a control system or manual control. It is operated by a source of energy, which can be mechanical force, electrical current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into motion. An actuator is the mechanism by which a control system acts upon an environment. The control system can be simple (a fixed mechanical or electrical system), -based (e.g. a printer driver, control system), a , or any other input.
  • Bidirectional transducers can convert physical phenomena to electrical signals and electrical signals into physical phenomena. An example of an inherently bidirectional transducer is an antenna, which can convert (electromagnetic waves) into an electrical signal to be processed by a , or translate an electrical signal from a into radio waves. Another example is a , which is used in to translate an electrical into , and in dynamic microphones to translate sound waves into an audio signal.
  • Transceivers integrate simultaneous bidirectional functionality. The most ubiquitous example are likely radio (called transponders in aircraft), used in virtually every form of (tele-)communications and network device connections. Another example is ultrasound transceivers that are used for instance in medical ultrasound (echo) scans.


Active vs passive transducers
Passive transducers require an external power source to operate, which is called an excitation signal. The signal is modulated by the sensor to produce an output signal. For example, a does not generate any electrical signal, but by passing an electric current through it, its resistance can be measured by detecting variations in the current or across the thermistor.Fraden J. (2016). Handbook of Modern Sensors: Physics, Designs, and Applications 5th ed. Springer. p.7

Active transducers in contrast, generate electric current in response to an external stimulus which serves as the output signal without the need of an additional energy source. Such examples are a , and a piezoelectric sensor, photovoltaic, .


Characteristics
Some specifications that are used to rate transducers:
  • : This is the ratio between the largest signal and the smallest amplitude signal the transducer can effectively translate. Transducers with larger dynamic range are more "sensitive" and precise.
  • : This is the ability of the transducer to produce an identical output when stimulated by the same input.
  • Noise: All transducers add some random noise to their output. In electrical transducers this may be due to thermal motion of charges in circuits. Noise corrupts small signals more than large ones.
  • : This is a property in which the output of the transducer depends not only on its current input but its past input. For example, an actuator which uses a may have some backlash, which means that if the direction of motion of the actuator reverses, there will be a dead zone before the output of the actuator reverses, caused by play between the gear teeth.


Applications

Electromagnetic
  • Antennae – converts propagating electromagnetic waves to and from conducted electrical signals
  • Magnetic cartridges – converts relative physical motion to and from electrical signals
  • , disk read-and-write heads – converts magnetic fields on a to and from electrical signals
  • Hall effect sensors – convert a level into an electrical signal
  • Variable reluctance sensors – the movement of nearby ferrous metal objects induce an alternating current electrical signal
  • Pickups – detect movement of metal strings and induce an electrical signal (AC voltage)


Electrochemical
  • Electro-galvanic oxygen sensors
  • Potentiometric sensor

Electromechanical
Electromechanical input feeds meters and sensors, while electromechanical output devices are generically called ):
  • Air flow sensors
  • Electroactive polymers
  • ,
  • Linear variable differential transformers or rotary variably differential transformers
  • – converts force to mV/V electrical signal using
  • Microelectromechanical systems
  • (when used for measuring position)
  • String potentiometers
  • Vibration powered generators
  • Vibrating structure gyroscopes

Electroacoustic
  • , – convert electrical signals into sound ( signal → → motion → air pressure)
  • – convert sound into an electrical signal (air pressure → motion of conductor/coil → → electrical signal)
  • Tactile transducers – convert electrical signal into vibration (electrical signal → vibration)
  • – convert electrical signals into temperature fluctuations, which become sound (electrical signal → periodic heating of a thin conductor → temperature waves → sound waves)
  • – convert deformations of solid-state crystals (vibrations) to and from electrical signals
  • – convert a ground movement (displacement) into voltage (vibrations → motion of conductor/coil → → signal)
  • – (air pressure → motion → → electrical signal)
  • – convert changes in water pressure into an electrical signal
  • Sonar transponders (water pressure → Motion of conductor/coil → → electrical signal)
  • Ultrasonic transceivers, transmitting (transduced from electricity) as well as receiving it after from target objects, availing for imaging of those objects


Electro-optical
Also known as photoelectric:
  • – convert electrical power into incoherent light
  • Incandescent lamps – convert electrical power into incoherent light
  • Light-emitting diodes – convert electrical power into incoherent light
  • – convert electrical power into coherent light
  • , , , – convert changing light levels into electrical signals
  • or or light dependent resistor (LDR) – convert changes in light levels into changes in electrical resistance
  • (CRT) – convert electrical signals into visual signals


Electrostatic

Thermoelectric
  • Resistance temperature detectors (RTD) – convert temperature into an electrical resistance signal
  • – convert relative temperatures of metallic junctions to electrical voltage
  • (includes PTC resistor and NTC resistor)


Radioacoustic
  • Geiger-Müller tubes – convert incident ionizing radiation to an electrical impulse signal
  • Radio receivers – convert electromagnetic transmissions to electrical signals.
  • Radio transmitters – convert electrical signals to electromagnetic transmissions.


See also


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs