Product Code Database
Example Keywords: sports games -boots $10
   » » Wiki: Track Gauge
Tag Wiki 'Track Gauge'.

In , track gauge or track gage is the spacing of the rails on a and is measured between the inner faces of the load-bearing rails.

All vehicles on a rail network must have running gear that is compatible with the track gauge, and in the earliest days of railways the selection of a proposed railway's gauge was a key issue. As the dominant parameter determining interoperability, it is still frequently used as a descriptor of a route or network.

In some places there is a distinction between the nominal gauge and the actual gauge, due to divergence of track components from the nominal. Railway engineers use a device, like a , to measure the actual gauge, and this device is also referred to as a track gauge.

The terms and , both widely used, have little connection with track gauge. Both refer to two-dimensional cross-section profiles, surrounding the track and vehicles running on it. The structure gauge specifies the outline into which new or altered structures (bridges, lineside equipment etc.) must not encroach. The loading gauge is the corresponding envelope within which rail vehicles and their loads must be contained. If an exceptional load or a new type of vehicle is being assessed to run, it is required to conform to the route's loading gauge. Conformance ensures that traffic will not collide with lineside structures.

Selection of gauge

Early track gauges
The earliest form of railway was a wooden wagonway, along which single wagons were manhandled, almost always in or from a mine or quarry. Initially the wagons were guided by human muscle power; subsequently by various mechanical methods. Timber rails wore rapidly: later, flat cast-iron plates were provided to limit the wear. In some localities, the plates were made L-shaped, with the vertical part of the L guiding the wheels; this is generally referred to as a "plateway". Flanged wheels eventually became universal, and the spacing between the rails had to be compatible with that of the wagon wheels. name = lewis> M J T Lewis, ''Early Wooden Railways'', Routledge Keegan Paul, London, 1970

As the guidance of the wagons was improved, short strings of wagons could be connected and pulled by horses, and the track could be extended from the immediate vicinity of the mine or quarry, typically to a navigable waterway. The wagons were built to a consistent pattern and the track would be made to suit the wagons: the gauge was more critical. The of 1802 in South Wales, a plateway, spaced these at over the outside of the upstands.R Cragg, Civil Engineering Heritage – Wales and West Central, Thomas Telford Publishing, London, 2nd edition 1997, England,

Penydarren Tramroad probably carried the first journey by a locomotive, in 1804, and it was successful for the locomotive, but unsuccessful for the track: the plates were not strong enough to carry its weight. A considerable progressive step was made when cast iron edge rails were first employed; these had the major axis of the rail section configured vertically, giving a much stronger section to resist bending forces, and this was further improved when fish-belly rails were introduced.Andy Guy and Jim Rees, Early Railways 1569–1830, Shire Publications in association with the National Railway Museum, Oxford, 2011,

Edge rails required a close match between rail spacing and the configuration of the wheelsets, and the importance of the gauge was reinforced. Railways were still seen as local concerns: there was no appreciation of a future connection to other lines, and selection of the track gauge was still a pragmatic decision based on local requirements and prejudices, and probably determined by existing local designs of (road) vehicles.

Thus, the Monkland and Kirkintilloch Railway (1826) in the West of Scotland used ;Don Martin, The Monkland and Kirkintilloch and Associated Railways, Strathkelvin Public Libraries, Kirkintilloch, 1995, the Dundee and Newtyle Railway (1831) in the north-east of Scotland adopted ;Dr N Ferguson, The Dundee and Newtyle Railway including the Alyth and Blairgowrie Branches, The Oakwood Press, 1995, . the Redruth and Chasewater Railway (1825) in Cornwall chose .D B Barton, The Redruth and Chasewater Railway, 1824–1915, D Bradford Barton Ltd, Truro, 2nd edition, 1966

The Arbroath and Forfar Railway opened in 1838 with a gauge of ,, The Railways of Great Britain and Ireland Practically Described and Illustrated, 1842, reprint 1969, David & Charles (Publishers) Limited, Newton Abbot, and the of 1839 used

Standard gauge appears
were being developed in the first decades of the 19th century; they took various forms, but George Stephenson developed a successful locomotive on the Wagonway, where he worked. His designs were so successful that they became the standard, and when the Stockton and Darlington Railway was opened in 1825, it used his locomotives, with the same gauge as the Killingworth line, .W W Tomlinson, The North Eastern Railway, its Rise and Development, Andrew Reid & Co, Newcastle upon Tyne, 1915Nicholas Wood, A Practical Treatise on Rail-Roads, Longman, Orme, Brown, Green and Longmans, London, Third edition, 1838

The Stockton and Darlington line was immensely successful, and when the Liverpool and Manchester Railway, the first intercity line, was built (it opened in 1830), it used the same gauge. It was also hugely successful, and the gauge (now eased to ), became the automatic choice: "".

Gauge differences
The Liverpool and Manchester was quickly followed by other trunk railways, with the Grand Junction Railway and the London and Birmingham Railway forming a huge critical mass of . When Bristol promoters planned a line from London, they employed the innovative engineer Isambard Kingdom Brunel. He decided on a wider gauge, to give greater stability, and the Great Western Railway adopted a gauge of , later eased to . This became known as . The Great Western Railway (GWR) was successful and was greatly expanded, directly and through friendly associated companies, widening the scope of broad gauge.

At the same time, other parts of Britain built railways to standard gauge, and British technology was exported to European countries and parts of North America, also using standard gauge. Britain polarised into two areas: those that used and those that used standard gauge. In this context, standard gauge was referred to as "narrow gauge" to indicate the contrast. Some smaller concerns selected other non-standard gauges: the Eastern Counties Railway adopted . Most of them converted to standard gauge at an early date, but the GWR's broad gauge continued to grow.

The larger railway companies wished to expand geographically, and large areas were considered to be under their control. When a new independent line was proposed to open up an unconnected area, the gauge was crucial in determining the allegiance that the line would adopt: if it was broad gauge, it must be friendly to the Great Western railway; if narrow (standard) gauge, it must favour the other companies. The battle to persuade or coerce that choice became very intense, and became referred to as .

As passenger and freight transport between the two areas became increasingly important, the difficulty of moving from one gauge to the other—the —became more prominent and more objectionable. In 1845 a Royal Commission on Railway Gauges was created to look into the growing problem, and this led to the Regulating the Gauge of Railways Act 1846, which forbade the construction of broad gauge lines unconnected with the broad gauge network. The broad gauge network was eventually converted—a progressive process completed in 1892, called gauge conversion. The same Act mandated the gauge of for use in Ireland.

Gauge selection in other countries
railways were built in other countries, the gauge selection was pragmatic: the track would have to fit the rolling stock. If locomotives were imported from elsewhere, especially in the early days, the track would be built to fit them. In some cases standard gauge was adopted, but many countries or companies chose a different gauge as their national gauge, either by governmental policy, or as a matter of individual choice. Government officials in Spain were concerned that the rail lines they were planning could be used by an invader, and purposely chose gauges that were different from their neighbors. The Russian Railways and Imperial Intersections in the Russian Empire, Karl E. M. Starns, Thesis, University of Washington 2012, p. 33

Narrow gauges were widely used in mountainous regions, as construction costs tended to be lower and they enabled the tighter turns that were often required.

To keep the rail traffic compatible within a network, not only the track gauge needs to be the same, but also the , at least for locomotive-hauled vehicles. For this reason, most of the standard gauge railways in Europe use the standard buffers and chain coupler with some use of the buckeye coupler in the UK, for locomotive hauled vehicles, and some use Scharfenberg couplers on suburban multiple unit as well as variants of the SA3 couplers on some , while narrow gauge railways use a variation of couplers, since they often are isolated from each other, so standardisation is not needed. Similarly, standard gauge railways in Canada, the US and Mexico use the or the compatible tightlock coupling for locomotive-hauled equipment.

The terms standard gauge, broad gauge and narrow gauge do not have any fixed meaning. A "standard" gauge is only standard in a geographical region where it is dominant, but it is generally understood to be . An infrastructure owner would be ill-advised to order track materials simply as "standard gauge", but would normally specify the required critical dimensions of the components.

Broad gauge and narrow gauge are relative to the generally adopted standard.

In British practice, the space between the rails of a track is colloquially referred to as the "four-foot", and the space between two tracks the "six-foot", descriptions relating to the respective dimensions.

Standard gauge
In common usage the term "standard gauge" refers to .

Broad gauge
In modern usage, broad gauge generally refers to track spaced significantly wider than .

Medium gauge
The term medium gauge had different meanings throughout history, depending on the local dominant gauge in use.
  • In Australia, and gauge railways are classified as medium gauge in order to make a distinction with and the narrow gauges such as the widely used gauge sugar-cane railways.
  • In 1847, the was considered a medium gauge compared to Brunel's and the narrow gauge, nowadays being .
  • In North America medium gauge was track gauge, also called "".in Canada.

Narrow gauge
During the period known as "the Battle of the gauges", Stephenson's standard gauge was commonly known as "narrow gauge", while Brunel's railway's gauge was termed "".

As the gauge of a railway is reduced the costs of construction can be reduced since narrow gauges allow smaller-radius curves, allowing obstacles to be avoided rather than having to be built over or through (valleys and hills); the reduced cost is particularly noticeable in mountainous regions, and many narrow gauge railways were built in , the of North America, Central Europe and South America.

Industrial railways are often narrow gauge. Sugar cane and banana plantations are often served by narrow gauges such as , as there is little through traffic to other systems. gauge was also used in French mines.

The most widely used narrow gauges on public railways are:

  • (Southern and Central Africa, Indonesia, Japan, Taiwan, Philippines, parts of Australia, New Zealand, Honduras and Costa Rica.)
  • (East Africa, South America, Central Europe and Peloponese, Greece).

Very narrow gauges of and under were used for some industrial railways in space-restricted environments such as or farms. The French company developed and tracks, mainly for mines; Heywood developed gauge for estate railways. The most common minimum-gauges were ,
(1974). 9780902844261, Turntable Enterprises. .
, , , or .

Break of gauge
operation between railway networks with different gauges was originally impossible; goods had to be transshipped and passengers had to change trains. This was obviously a major obstacle to convenient transport, and in Great Britain, led to political intervention.

On narrow gauge lines, or transporter wagons are used: standard gauge wagons are carried on narrow gauge lines on these special vehicles, generally with rails of the wider gauge to enable those vehicles to roll on and off at transfer points.

On the Transmongolian Railway, Russia and Mongolia use while China uses the Standard gauge of 1,435 mm. At the border, each carriage is lifted and its . The operation can take several hours for a whole train of many carriages.

Other examples include crossings into or out of the former Soviet Union: Ukraine/Slovakia border on the Bratislava–L'viv train, and the Romania/Moldova border on the Chişinău-Bucharest train.

A system developed by and Construcciones y Auxiliar de Ferrocarriles (CAF) of Spain uses variable gauge wheelsets; at the border between France and Spain, through passenger trains are drawn slowly through apparatus that alters the gauge of the wheels, which slide laterally on the axles. This is fully described in Automatic Gauge Changeover for Trains in Spain.Alberto García Álvarez, Automatic Gauge Changeover for Trains in Spain, Fundación de los Ferrocarrilos Españoles, 2010, online at [2]

A similar system is used between China and Central Asia, and between Poland and Ukraine, using the SUW 2000 and variable axle systems.Experience and results of operation the SUW 2000 system in traffic corridors at China and Poland use standard gauge, while Central Asia and Ukraine use .

Dual gauge
Where a railway corridor is used by trains of two gauges, (or dual gauge) track can be provided, in which three rails are supported in the same track structure. This arose particularly when individual railway companies chose different gauges and were subsequently required to share a route; this is most commonly found at the approaches to city terminals, where land space is limited.

Trains of different gauges sharing the same track can save considerable expense compared to using separate tracks for each gauge, but introduces complexities in track maintenance and signalling, and may require speed restrictions for some trains. If the difference between the two gauges is large enough, for example between and , three-rail dual-gauge is possible, but if not, for example between and , four-rail triple-gauge is used. Dual-gauge rail lines are used in Switzerland, Australia, Argentina, Brazil, Japan, North Korea, Spain, Tunisia and Vietnam.

On the GWR, there was an extended period between political intervention in 1846 that prevented major expansion of its The Act of Parliament did not prohibit expansion of the existing broad gauge system, but it had the indirect and delayed effect of forcing conformity with the "standard" gauge eventually and the final gauge conversion to standard gauge in 1892.

During this period, there were many locations where practicality required mixed gauge operation, and in station areas, the track configuration was extremely complex. This was compounded by the fact that the common rail had to be at the platform side in stations, so in many cases, standard-gauge trains needed to be switched from one side of the track to the other at the approach. A special fixed point arrangement was devised for the purpose, where the track layout was simple enough. Jenkins and LangleyS C Jenkins and R C Langley, The West Cornwall Railway, The Oakwood Press, Usk, 2002, , p. 66 give an illustration and description.

In some cases, mixed gauge trains operated, conveying wagons of both gauges. For example, MacDermotE T MacDermot, History of the Great Western Railway, vol II: 1863–1921, published by the Great Western Railway, London, 1931, p. 316 says:

In November 1871 a novelty in the shape of a mixed-gauge goods train was introduced between Truro and Penzance. It was worked by a narrow-gauge engine, and behind the narrow-gauge trucks came a broad-gauge match-truck with wide buffers and sliding shackles, followed by the broad-gauge trucks. Such trains continued to run in West Cornwall until the abolition of the Broad Gauge; they had to stop or come down to walking pace at all stations where fixed points existed and the narrow portion side-stepped to right or left.

Nominal track gauge
The nominal track gauge is the distance between the inner faces of the rails. In current practice, it is specified at a certain distance below the rail head as the inner faces of the rail head (the gauge faces) are not necessarily vertical.

Rolling stock on the network must have running gear (wheelsets) that are compatible with the gauge, and therefore the gauge is a key parameter in determining interoperability, but there are many others – see below. In some cases in the earliest days of railways, the railway company saw itself as an infrastructure provider only, and independent hauliers provided wagons suited to the gauge. Colloquially the wagons might be referred to as "four-foot gauge wagons", say, if the track had a gauge of four feet. This nominal value does not equate to the flange spacing, as some freedom is allowed for.

An infrastructure manager might specify new or replacement track components at a slight variation from the nominal gauge for pragmatic reasons.

The gauge is defined in old or in universally accepted or SI units.

Imperial units were established in the United Kingdom by The Weights and Measures Act of 1824. The United States customary units for length did not agree with the Imperial system until 1959, when one International yard was defined as 0.9144 meters, i.e. 1 foot as 0.3048 meter and 1 inch as 25.4 mm.

The list shows the Imperial and other units that have been used for track gauge definitions:

304.8 mm
278.6 mm6 Castilian feet =
(2 Castilian feet =
332.8 mm5 Portuguese feet =
296.904 mm3 Swedish feet =
2.7 Swedish feet =
(Rheinfuß)313.85 mmPrussian feet =
1520 mmAustrian fathom =

Temporary way – permanent way
The temporary way is the temporary track often used for construction, replaced by the (the structure consisting of the rails, fasteners, and (or slab track), plus the underlying subgrade) when construction nears completion. In many cases narrow-gauge track is used for a temporary way because of the convenience in laying it and changing its location over unimproved ground.

In restricted spaces such as tunnels, the temporary way might be double track even though the tunnel will ultimately be single track. The Airport Rail Link in Sydney had construction trains of gauge, which were replaced by permanent tracks of gauge.

During World War I trench warfare led to a relatively static disposition of infantry, requiring considerable logistics to bring them support staff and supplies (food, ammunition, earthworks materials, etc.). Dense light railway networks using temporary narrow gauge track sections were established by both sides for this purpose.Christian Wolmar, Engines of War: How Wars Were Won & Lost on the Railways, Atlantic Books, London, 2010,

In 1939 it was proposed to construct the western section of the Yunnan–Burma Railway using a gauge of , since such tiny or "toy" gauge facilitates the tightest of curves in difficult terrain.

Maintenance standards
Infrastructure owners specify permitted variances from the nominal gauge, and the required interventions when non-compliant gauge is detected. For example, the Federal Railroad Administration in the USA specifies that the actual gauge of a 1,435 mm track that is rated for a maximum of must be between and .

Advantages and disadvantages of different track gauges
When selecting a gauge, there is a trade-off between different pros and cons:
  • Narrow Gauge:
:Pros: Lower cost, less demanding right-of-way and construction
:Cons: Lower speed, less stability, less load carrying capacity
  • Broad Gauge:
:Pros: Higher speed, stability and capacity
:Cons: Higher cost, more demanding right-of-way and construction
One generally wants speed/stability/capacity, and one wants economy, but there is often an inverse relationship between these priorities. In addition, there are other constraints, such as the load-carrying capacity of axles, which may be problematic with an excessively wide gauge. There is a common misconception that a narrower gauge permits a tighter turning radius, but for practical purposes, there is no meaningful relationship between gauge and curvature.

Narrow gauge railways usually cost less to build because they are usually lighter in construction, using smaller and (smaller ), as well as smaller , smaller (smaller ) and tighter curves. Narrow gauge is thus often used in mountainous terrain, where the savings in civil engineering work can be substantial. It is also used in sparsely populated areas, with low potential demand, and for temporary railways that will be removed after short-term use, such as for construction, the logging industry, the mining industry, or large-scale construction projects, especially in confined spaces (see Temporary way – permanent way).

Broader gauge railways are generally more expensive to build, but offer higher speed, stability, and capacity. For routes with high traffic, greater capacity may more than offset the higher initial cost of construction.

There is no single perfect gauge, because different environments and economic considerations come into play. A narrow gauge is better suited for difficult terrain and/or routes with low traffic. Conversely, wide gauge is preferable for direct, unimpeded routes with high traffic. The is intended to strike a reasonable balance between these factors; this may also be true of the and the .

In addition to the general trade-off, another important factor is standardization. Once a standard has been chosen, and equipment, infrastructure, and training calibrated to that standard, conversion becomes difficult and expensive. This also makes it easier to adopt an existing standard than to invent a new one. This is true of , including railroad gauges. For rail gauge in particular, often causes inefficiency far in excess of the merits of any particular gauge. The reduced cost, greater efficiency, and greater economic opportunity offered by the use of a common standard explains why a small number of gauges predominate worldwide.

Dominant gauges
Approximately 55% of the world's railways use the .

Argentina (), Brazil (), Bolivia, northern Chile, Spain (, FGC, , FGV, SFM), Switzerland (, MOB, BOB, MGB), Malaysia, Thailand, , Bangladesh, East Africa
(approx. 7% of the world's railways)
Three foot six inch gauge Southern and Central Africa, Nigeria (most), Indonesia, Japan, Taiwan, Philippines, New Zealand, Queensland, Australia, Western Australia and South Australia.
(approx. 9% of the world's railways)
Albania, Argentina, Australia, Austria, Belgium, Bosnia and Herzegovina, Brazil (), Bulgaria, Canada, China, Croatia, Cuba, Czech Republic, Denmark, Djibouti, DR Congo (Kamina-Lubumbashi section, planned), Ethiopia, France, Germany, Great Britain (United Kingdom), Greece, Hungary, India (only used in ), Indonesia ( and ), Italy, Israel, Liechtenstein, Lithuania (), Luxembourg, Macedonia, Mexico, Montenegro, Netherlands, North Korea, Norway, Panama, Peru, Philippines, Poland, Romania, Serbia, Slovakia, Slovenia, South Korea, Spain (, and FGC), Sweden, Switzerland, United States, Uruguay, Venezuela, Also private companies' lines and JR high-speed lines in Japan. High-speed lines in Taiwan. commuter system in South Africa.
(approx. 55% of the world's railways)
Five foot and 1520 mm gauge Armenia, Azerbaijan, Belarus, Finland, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Mongolia, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan.
(approx. 17.2% of the world's railways; all contiguous – redefined from )
Finnish gauge Finland (contiguous to and generally compatible with )
Five foot three inch gauge Ireland, Northern Ireland (United Kingdom) (), and in the Australian states of Victoria and South Australia (), Brazil ()
Portugal, Spain. Sometimes referred to as Iberian gauge. In Spain the Administrador de Infraestructuras Ferroviarias (ADIF) managed of this gauge and of mixed gauge at end of 2010.Karl Arne Richter (editor), Europäische Bahnen '11, Eurailpress, Hamburg, 2010, The Portuguese Rede Ferroviária Nacional (REFER) managed of this gauge of this track at the same date.
Five foot six inch gauge India, Pakistan, Bangladesh, Sri Lanka, Argentina, Chile, BART in the United States San Francisco Bay Area
(approx. 11.37% of the world's railways)
Total for each type of gauge.
Narrow Gauge207,00015.8%
Standard Gauge720,00054.8%
Broad Gauge385,06729.3%

Further convergence of rail gauge use seems likely, as countries seek to build inter-operable networks, and international organisations seek to build macro-regional and continental networks. The has set out to develop inter-operable freight and passenger rail networks across its area, and is seeking to standardise gauge, signalling and electrical power systems. As countries build , they also tend to converge these rails' gauge to standard gauge, with the exceptions of Uzbekistan and Russia.

EU funds have been dedicated to assist , , and in the building of some key railway lines () of , and to assist Spain and Portugal in the construction of high-speed lines to connect Iberian cities to one another and to the French high-speed lines. The EU has developed plans for improved freight rail links between Spain, Portugal, and the rest of Europe.

Trans-Asian Railway
The Economic and Social Commission for Asia and the Pacific (UNESCAP) is planning a Trans-Asian Railway that will link Europe and the Pacific, with a Northern Corridor from Europe to the Korean Peninsula, a Southern Corridor from Europe to Southeast Asia, and a North–South corridor from Northern Europe to the Persian Gulf. All these would encounter breaks of gauge as they cross Asia. Current plans have mechanized facilities at the breaks of gauge to move containers from train to train rather than widespread gauge conversion.

The Americas
  • 2008: Proposed link between Venezuela and Colombia
  • 2008: Venezuela via Brazil to Argentina –
  • 2008: A proposed line across Southern Paraguay to link Argentina at Resistencia to Brazil at ; both those lines are , and the new line would allow "bioceanic" running from the Atlantic port of Paranaguá in Brazil to that of in Chile on the Pacific.

The East African Railway Master Plan is a proposal for rebuilding and expanding railway lines connecting Ethiopia, Djibouti, Kenya, Uganda, Rwanda, Burundi, Tanzania, South Sudan and beyond. The plan is managed by infrastructure ministers from participating East African Community countries in association with transport consultation firm . Older railways are of or gauge. Newly rebuilt lines will use . The standard gauge Addis Ababa–Djibouti and Mombasa–Nairobi railways were scheduled to begin regular freight and passenger services in 2017.

Lines for iron ore to in Cameroon are likely to be with a likely connection to the same port from the Cameroon system. This line owned by Sundance Resources may be shared with .

Nigeria's railways are mostly Cape gauge. The Lagos–Kano Standard Gauge Railway is a gauge conversion project by the Nigerian Government to create a north-south standard gauge rail link. The first converted segment, between and , was completed in July 2016.

port, a construction proposal in Western Australia, would be served by a railway line providing for both trains from Geraldton and trains carrying iron ore from the hinterland.

  • – 1825 – chosen by George Stephenson
  • – 1827 – chosen by for the South Carolina Canal and Rail Road Company
  • – 1836 – chosen by for the Festiniog Railway to easily navigate mountainous terrain (started Britain's first narrow gauge passenger service in 1865) (originally horse-drawn)
  • – 1838 – chosen by I. K. Brunel
  • – 1842 – chosen by George Washington Whistler for the Moscow – Saint Petersburg Railway based on Southern US practice
  • – 1846 – chosen in Ireland as a compromise
  • – 1853 – chosen by in India following Scottish practice
  • – 1862 – chosen by for the Røros Line in Norway to reduce costs
  • – 1865 – chosen by Abraham Fitzgibbon for the Queensland Railways to reduce costs
  • – 1870 – chosen by William Jackson Palmer for the Denver & Rio Grande Railway to reduce costs (inspired by the Festiniog Railway)
  • – 1877 – chosen by George E. Mansfield for the Billerica and Bedford Railroad to reduce costs (inspired by the Festiniog Railway)
  • – 1887 – chosen by to reduce costs; had designs for a matching fleet of rolling stock

See also


External links

Page 1 of 1
Page 1 of 1


Pages:  ..   .. 
Items:  .. 


General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 


Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
5s Time