Toxicokinetics (often abbreviated as 'TK') is the description of both what rate a chemical will enter the body and what occurs to excrete and metabolize the compound once it is in the body.
Similarly, physiological toxicokinetic models are PBPK developed to describe and predict the behavior of a toxicant in an animal body; for example, what parts (compartments) of the body a chemical may tend to enter (e.g. fat, liver, spleen, etc.), and whether or not the chemical is expected to be metabolized or excreted and at what rate.
A well designed toxicokinetic study may involve several different strategies and depends on the scientific question to be answered. Controlled Acute toxicity and repeated toxicokinetic animal studies are useful to identify a chemical's biological persistence, tissue and whole body half-life, and its potential to bioaccumulate. Toxicokinetic profiles can change with increasing exposure duration or dose. Real world environmental exposures generally occur as low level mixtures, such as from air, water, food, or tobacco products. Mixture effects may differ from individual chemical toxicokinetic profiles because of chemical interactions, synergistic, or competitive processes. For other reasons, it is equally important to characterize the toxicokinetics of individual chemicals constituents found in mixtures as information on behavior or fate of the individual chemical can help explain environmental, human, and wildlife biomonitoring studies.
|
|