Thermite () entry "thermite" is a pyrotechnic composition of metal powder and metal oxide. When ignited by heat or chemical reaction, thermite undergoes an exothermic redox reaction. Most varieties are not explosive, but can create brief bursts of heat and high temperature in a small area. Its form of action is similar to that of other fuel-oxidizer mixtures, such as gunpowder.
Thermites have diverse compositions. Fuels include aluminium, magnesium, titanium, zinc, silicon, and boron. Aluminum is common because of its high boiling point and low cost. Oxidizers include bismuth(III) oxide, boron(III) oxide, silicon(IV) oxide, chromium(III) oxide, manganese(IV) oxide, iron(III) oxide, iron(II,III) oxide, copper(II) oxide, and lead(II,IV) oxide. In a thermochemical survey comprising twenty-five metals and thirty-two metal oxides, 288 out of 800 binary combinations were characterized by adiabatic temperatures greater than 2000 K. Combinations like these, which possess the thermodynamic potential to produce very high temperatures, are either already known to be reactive or are plausible thermitic systems.
The first thermite reaction was discovered in 1893 by the German chemist Hans Goldschmidt, who obtained a patent for his process. Today, thermite is used mainly for thermite welding, particularly for welding together . Thermites have also been used in metal refining, disabling munitions, and in incendiary weapons. Some thermite-like mixtures are used as pyrotechnic initiators in fireworks.
The products are aluminium oxide, elemental iron, and a large amount of heat. The reactants are commonly and mixed with a binder to keep the material solid and prevent separation.
Other metal oxides can be used, such as chromium oxide, to generate the given metal in its elemental form. For example, a copper thermite reaction using copper oxide and elemental aluminum can be used for creating electric joints in a process called cadwelding, that produces elemental copper (it may react violently):
Thermites with nanosized particles are described by a variety of terms, such as metastable intermolecular composites, super-thermite, nano-thermite, and nanocomposite energetic materials.
The first commercial application of thermite was the welding of tram tracks in Essen in 1899.
Combinations of dry ice (frozen carbon dioxide) and reducing agents such as magnesium, aluminum and boron follow the same chemical reaction as with traditional thermite mixtures, producing metal oxides and carbon. Despite the very low temperature of a dry ice thermite mixture, such a system is capable of being ignited with a flame. When the ingredients are finely divided, confined in a pipe and armed like a traditional explosive, this cryo-thermite is detonatable and a portion of the carbon liberated in the reaction emerges in the form of diamond.
In principle, any reactive metal could be used instead of aluminum. This is rarely done, because the properties of aluminum are nearly ideal for this reaction:
Although the reactants are stable at room temperature, they burn with an extremely intense exothermic reaction when they are heated to ignition temperature. The products emerge as liquids due to the high temperatures reached (up to 2500 °C (4532°F) with iron(III) oxide)—although the actual temperature reached depends on how quickly heat can escape to the surrounding environment. Thermite contains its own supply of oxygen and does not require any external source of air. Consequently, it cannot be smothered, and may ignite in any environment given sufficient initial heat. It burns well while wet, and cannot be easily extinguished with water—though enough water to remove sufficient heat may stop the reaction. Small amounts of water boil before reaching the reaction. Even so, thermite is used for welding under water.
The thermites are characterized by almost complete absence of gas production during burning, high reaction temperature, and production of molten slag. The fuel should have high heat of combustion and produce oxides with low melting point and high boiling point. The oxidizer should contain at least 25% oxygen, have high density, low heat of formation, and produce metal with low melting and high boiling points (so the energy released is not consumed in evaporation of reaction products). Organic binders can be added to the composition to improve its mechanical properties, but they tend to produce endothermic decomposition products, causing some loss of reaction heat and production of gases.
The temperature achieved during the reaction determines the outcome. In an ideal case, the reaction produces a well-separated melt of metal and slag. For this, the temperature must be high enough to melt both reaction products, the resulting metal and the fuel oxide. Too low a temperature produces a mixture of sintered metal and slag; too high a temperature (above the boiling point of any reactant or product) leads to rapid production of gas, dispersing the burning reaction mixture, sometimes with effects similar to a low-yield explosion. In compositions intended for production of metal by aluminothermic reaction, these effects can be counteracted. Too low a reaction temperature (e.g., when producing silicon from sand) can be boosted with addition of a suitable oxidizer (e.g., sulfur in aluminum-sulfur-sand compositions); too high a temperature can be reduced by using a suitable coolant or slag flux. The flux often used in amateur compositions is calcium fluoride, as it reacts only minimally, has relatively low melting point, low melt viscosity at high temperatures (therefore increasing fluidity of the slag) and forms a eutectic with alumina. Too much flux, however, dilutes the reactants to the point of not being able to sustain combustion. The type of metal oxide also has dramatic influence to the amount of energy produced; the higher the oxide, the higher the amount of energy produced. A good example is the difference between manganese(IV) oxide and manganese(II) oxide, where the former produces too high temperature and the latter is barely able to sustain combustion; to achieve good results, a mixture with proper ratio of both oxides can be used.
The reaction rate can be also tuned with particle sizes; coarser particles burn slower than finer particles. The effect is more pronounced with the particles requiring heating to higher temperature to start reacting. This effect is pushed to the extreme with .
The temperature achieved in the reaction in adiabatic conditions, when no heat is lost to the environment, can be estimated using Hess's law – by calculating the energy produced by the reaction itself (subtracting the enthalpy of the reactants from the enthalpy of the products) and subtracting the energy consumed by heating the products (from their specific heat, when the materials only change their temperature, and their enthalpy of fusion and eventually enthalpy of vaporization, when the materials melt or boil). In real conditions, the reaction loses heat to the environment, the achieved temperature is therefore somewhat lower. The heat transfer rate is finite, so the faster the reaction is, the closer to adiabatic condition it runs and the higher is the achieved temperature.
The original mixture, as invented, used iron oxide in the form of mill scale. The composition was very difficult to ignite.
Copper(I) thermite has industrial uses in e.g., welding of thick copper conductors (cadwelding). This kind of welding is being evaluated also for cable splicing on the US Navy fleet, for use in high-current systems, e.g., electric propulsion. Oxygen-balanced mixture has theoretical maximum density of 5.280 g/cm3, adiabatic flame temperature 2843 K (phase transitions included) with the aluminum oxide being molten and copper in both liquid and gaseous form; 77.6 g of copper vapor per kg of this thermite are produced. The energy content is 575.5 cal/g.
Ignition of a thermite reaction normally requires a sparkler or easily obtainable magnesium ribbon, but may require persistent efforts, as ignition can be unreliable and unpredictable. These temperatures cannot be reached with conventional black powder fuses, nitrocellulose rods, , pyrotechnic initiators, or other common igniting substances. Even when the thermite is hot enough to glow bright red, it does not ignite, as it has a very high ignition temperature. Starting the reaction is possible using a propane torch if done correctly.
Often, strips of magnesium metal are used as fuses. Because metals burn without releasing cooling gases, they can potentially burn at extremely high temperatures. Reactive metals such as magnesium can easily reach temperatures sufficiently high for thermite ignition. Magnesium ignition remains popular among amateur thermite users, mainly because it can be easily obtained, but a piece of the burning strip can fall off into the mixture, resulting in premature ignition.
The reaction between potassium permanganate and glycerol or ethylene glycol is used as an alternative to the magnesium method. When these two substances mix, a spontaneous reaction begins, slowly increasing the temperature of the mixture until it produces flames. The heat released by the oxidation of glycerine is sufficient to initiate a thermite reaction.
Apart from magnesium ignition, some amateurs also choose to use sparklers to ignite the thermite mixture. These reach the necessary temperatures and provide enough time before the burning point reaches the sample. This can be a dangerous method, as the iron sparks, like the magnesium strips, burn at thousands of degrees and can ignite the thermite, though the sparkler itself is not in contact with it. This is especially dangerous with finely powdered thermite.
Match heads burn hot enough to ignite thermite. Use of match heads enveloped with aluminum foil and a sufficiently long viscofuse/electric match leading to the match heads is possible.
Similarly, finely powdered thermite can be ignited by a flint spark lighter, as the sparks are burning metal (in this case, the highly reactive rare-earth metals lanthanum and cerium). Therefore, it is unsafe to strike a lighter close to thermite.
Thermite may be used for repair by the welding in-place of thick steel sections such as locomotive axle-frames where the repair can take place without removing the part from its installed location.
Thermite can be used for quickly cutting or welding steel such as rail tracks, without requiring complex or heavy equipment. However, defects such as slag inclusions and voids (holes) are often present in such welded junctions, so great care is needed to operate the process successfully. The numerical analysis of thermite welding of rails has been approached similar to casting cooling analysis. Both this finite element analysis and experimental analysis of thermite rail welds has shown that weld gap is the most influential parameter affecting defect formation. Increasing weld gap has been shown to reduce shrinkage cavity formation and cold lap , and increasing preheat and thermite temperature further reduces these defects. However, reducing these defects promotes a second form of defect: microporosity. Care must also be taken to ensure that the rails remain straight, without resulting in dipped joints, which can cause wear on high speed and heavy axle load lines. Studies to make the hardness of thermite welds to repair tracks have made improvements to the hardness to compare more to the original tracks while keeping its portable nature.
As the reaction of thermite is oxidation-reduction and environmentally friendly, it has started to be adapted into use for sealing oil wells instead of using concrete. Though thermite is usually in a powder-state, a diluted mixture can reduce damage to the surroundings during the process, though too much alumina can risk hurting the integrity of the seal. A higher concentration of mixture was needed to melt the plastic of a model tube, making it a favorable mixture. Other experiments have been done to simulate the heat flux of the well sealing to predict the temperature on the surface of the seal over time.
A thermite reaction, when used to purify the of some metals, is called the , or aluminothermic reaction. An adaptation of the reaction, used to obtain pure uranium, was developed as part of the Manhattan Project at Ames Laboratory under the direction of Frank Spedding. It is sometimes called the Ames process.
Copper thermite is used for welding together thick copper wires for the purpose of electrical connections. It is used extensively by the electrical utilities and telecommunications industries (exothermic welded connections).
A classic military use for thermite is disabling artillery pieces, and it has been used for this purpose since World War II, such as at Pointe du Hoc, Normandy. Because it permanently disables artillery pieces without the use of explosive charges, thermite can be used when silence is necessary to an operation. This can be accomplished by inserting one or more armed thermite grenades into the breechloader, then quickly closing it; this welds the breech shut and makes loading the weapon impossible.
During World War II, both German and Allied used thermite mixtures. Incendiary bombs usually consisted of dozens of thin, thermite-filled canisters () ignited by a magnesium fuse. Incendiary bombs created massive damage in numerous cities due to the fires started by the thermite. Cities that primarily consisted of wooden buildings were especially susceptible. These incendiary bombs were used primarily during nighttime air raids. Bombsights could not be used at night, creating the need for munitions that could destroy targets without requiring precision placement.
So called equipped with thermite munitions were used by the Ukrainian army during the Russian invasion of Ukraine against Russian positions.
If, for some reason, thermite is contaminated with organics, hydrated oxides and other compounds able to produce gases upon heating or reaction with thermite components, the reaction products may be sprayed. Moreover, if the thermite mixture contains enough empty spaces with air and burns fast enough, the super-heated air also may cause the mixture to spray. For this reason it is preferable to use relatively crude powders, so the reaction rate is moderate and hot gases could escape the reaction zone.
Preheating of thermite before ignition can easily be done accidentally, for example by pouring a new pile of thermite over a hot, recently ignited pile of thermite slag. When ignited, preheated thermite can burn almost instantaneously, releasing light and heat energy at a much higher rate than normal and causing burns and eye damage at what would normally be a reasonably safe distance.
The thermite reaction can take place accidentally in industrial locations where workers use abrasive grinding wheel with . Using aluminum in this situation produces a mixture of oxides that can explode violently.
Mixing water with thermite or pouring water onto burning thermite can cause a steam explosion, spraying hot fragments in all directions.
Thermite's main ingredients were also utilized for their individual qualities, specifically reflectivity and heat insulation, in a paint coating or Aircraft dope for the German zeppelin Hindenburg, possibly contributing to its fiery destruction. This was a theory put forward by the former NASA scientist Addison Bain, and later tested in small scale by the scientific reality-TV show MythBusters with semi-inconclusive results (it was proven not to be the fault of the thermite reaction alone, but instead conjectured to be a combination of that and the burning of hydrogen gas that filled the body of the Hindenburg). The MythBusters program also tested the veracity of a video found on the Internet, whereby a quantity of thermite in a metal bucket was ignited while sitting on top of several blocks of ice, causing a sudden explosion. They were able to confirm the results, finding huge chunks of ice as far as 50 m from the point of explosion. Co-host Jamie Hyneman conjectured that this was due to the thermite mixture , perhaps in a cloud of steam, causing it to burn even faster. Hyneman also voiced skepticism about another theory explaining the phenomenon: that the reaction somehow separated the hydrogen and oxygen in the ice and then ignited them. This explanation claims that the explosion is due to the reaction of high temperature molten aluminum with water. aluminum reacts violently with water or steam at high temperatures, releasing hydrogen and oxidizing in the process. The speed of that reaction and the ignition of the resulting hydrogen can easily account for the explosion verified. This process is akin to the explosive reaction caused by dropping metallic potassium into water.
|
|